首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   

3.
The presence of peroxidatic activity of catalase in eggs of the sea urchins Hemicentrotus pulcherrimus and Temnopleurus toreumaticus was investigated by the ultrastructural cytochemical techniue and by biochemical assay on homogenates of eggs from before fertilization to the 2-cell stage. Biochemical assays showed that the unfertilized eggs had strong catalase activity whereas fertilized eggs had weak activity owing to the rapid decrease of activity after fertilization. The activity did not change from immediately after fertilization to the 2-cell stage. Cytochemical examination showed that the peroxidatic activity of catalase was mainly localized in the lamellae in the cortical granules. Disintegrated cortical granules with no lamellae and substances in the perivitelline space derived from breakdown of the cortical granules had no peroxidatic activity of catalase.  相似文献   

4.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

5.
We have developed a procedure for isolating intact sperm asters in quantity from fertilized sea urchin eggs. This procedure is based on detergent-extraction methods developed previously for the bulk isolation of mitotic apparatuses. Using this protocol it is possible to isolate sperm asters as soon as they appear in the fertilized egg or at any subsequent point in their brief existence.  相似文献   

6.
7.
Cortical granule breakdown in sea urchin eggs has been investigated with a video microscope system using Nomarski differential interference contrast optics, when induced by fertilization, microinjecting inositol 1,4,5-trisphosphate (IP3) or Ca-EGTA buffer solution into the egg, or perfusing a medium containing 1 mM Ca2+ to isolated cortices. The cortical granule increased up to 1.2 times in diameter and broke down within 40 msec. These values were almost constant among the three methods used to induce cortical granule breakdown. Upon fertilization, the cortical granule breakdown propagated over the egg surface at a speed of 3.3 microns/sec in Clypeaster japonicus eggs, which indicates that cortical granule breakdown propagated through the 3.3-microns-wide egg surface within 1 sec. In such a small area of the egg surface, however, it took much more than 1 sec for all cortical granules to break down because the maximal rate of breakdown was 7.6%/sec; that is, it took 9 sec and 18 sec for 50% and 90% respectively, of cortical granules to break down. Moreover, the rate did not simply decrease with time, and a shoulder was found during the reducing phase, which suggests that cortical granules are divided into fast and slow breakdown groups according to the responsiveness to the breakdown stimulus. The cortical granule breakdown induced by microinjecting the Ca-EGTA buffer and IP3 solutions propagated at 68 microns/sec and 35 microns/sec, respectively. The stimulus for cortical granule breakdown is discussed concerning the transient intracellular Ca2+ increase.  相似文献   

8.
Cortical granule exocytosis in sea urchins was studied using hyperosmotic and polymer-containing seawater to halt granule matrix dispersal. Addition of Na2SO4-containing seawater (2.5 osmole/kg) to Strongylocentrotus purpuratus eggs 10 to 40 sec after insemination resulted in arrest of the exocytic wave during propagation. EM examination of these eggs revealed that matrix disassembly occurred in distinct stages. In the earliest stage, granule-plasma membrane fusion had occurred, but the matrix remained completely intact. This early stage was observed in hyperosmotic media, either ionic or nonionic, suggesting that matrix hydration is required for disassembly and exocytic pore widening, but not for membrane fusion. Subsequent stages, in which partially disassembled matrices remained within omega-configured pockets, were captured by activating eggs in 30% dextran in seawater. Stability of these intermediates stages required the presence of Ca2+ and Mg2+; in the absence of divalent cations the matrices completely disassembled and the exocytic pockets flattened. Divalent cations appeared to prevent fragmentation of the matrix lamellae. Late stages of matrix disassembly, in which the lamellae fragmented and formed small particles, were inhibited by media of high ionic strength. Hyperosmolality alone, provided by sucrose, was unable to halt these late stages suggesting that water availability does not play an important role once a critical point in matrix dispersal has been reached.  相似文献   

9.
Isolation and characterization of sea urchin egg cortical granules   总被引:1,自引:1,他引:1  
A method has been developed to isolate cortical granules (CG) free in suspension. It involves the mechanical disruption of the CG from CG lawns (CGL; Dev. Biol. 43:62-74, 1975) and concentration of the CG by low speed centrifugation. The isolated CG are intact and are a relatively pure population as judged by electron microscopy. Granule integrity is confirmed by the fact that isolated intact CG are radioiodinated to only 0.05% of the specific activity of hypotonically lysed CG. Purity of the CG preparation is assessed by the enrichment (four- to sevenfold) of CG marker enzymes and the absence or low activity of plasma membrane, mitochondrial, cytoplasmic, and yolk platelet marker enzyme activities. CG isolated from 125I-surface- labeled eggs have a very low specific radioactivity, demonstrating that CG contamination by the plasma membrane-vitelline layer (PM-VL) is minimal. CG yield is approximately 1% of the starting egg protein. The CG isolation method is simple and rapid, 4 mg of CG protein being obtained in 1 h. Isolated CG and PM-VL display distinct electrophoretic patterns on SDS gels. Actin is localized to the PM-VL, and all bands present in the CGL are accounted for in the CG and PM-VL. Calmodulin is associated with the CGL, CG, and PM-VL fractions, but is not specifically enriched in these fractions as compared with whole egg homogenates. This method of isolating intact CG from unfertilized sea urchin eggs may be useful for exploring the mechanism of Ca2+-mediated CG exocytosis.  相似文献   

10.
Recently, we have shown that high molecular weight polymers inhibit cortical granule exocytosis at total osmolalities only slightly higher than that of sea water (Whitaker, M., and J. Zimmerberg. 1987. J. Physiol. 389:527-539). In this study, we visualize the step at which this inhibition occurs. Lytechinus pictus and Strongylocentrotus purpuratus eggs were exposed to 0.8 M stachyose or 40% (wt/vol) dextran (average molecular mass of 10 kD) in artificial sea water, activated with 60 microM of the calcium ionophore A23187, and then either fixed with glutaraldehyde and embedded or quick-frozen and freeze-fractured. Stachyose (2.6 osmol/kg) appears to inhibit cortical granule exocytosis by eliciting formation of a granule-free zone (GFZ) in the egg cortex which pushes granules away from the plasma membrane thus preventing their fusion. In contrast, 40% dextran (1.58 osmol/kg) does not result in a GFZ and cortical granules undergo fusion. In some specimens, the pores joining granule and plasma membranes are relatively small; in other cases, the exocytotic pocket has been stabilized in an omega configuration and the granule matrix remains intact. These observations suggest that high molecular weight polymers block exocytosis because of their inability to enter the granule matrix: they retard the water entry that is needed for matrix dispersal.  相似文献   

11.
12.
13.
A major protein component of the sea urchin, Strongylocentrotus purpuratus, cortical granule exudate has been purified and characterized. In the absence of divalent cations, the native, soluble protein has a sedimentation coefficient at infinite dilution of 6.4 S and a molecular weight from sedimentation equilibrium measurements of 2.8 +/- 0.3 X 10(5). These and other data indicate that the protein assumes an elongated, rod-like structure in solution. The protein is greater than 95% homogeneous as judged by agarose- and sodium dodecyl sulfate-gel electrophoresis. In the latter experiments, the protein shows a relative molecular weight of 1.8 X 10(5) and is clearly distinct from the 11.6 S protein described earlier which shows two bands corresponding to 3.2 X 10(5) and 2.1 X 10(5). The 6.4 S protein is the major protein of the calcium-insoluble fraction of cortical granule exudate and contributes to the formation of the extracellular investments of the sea urchin embryo. Using a light-scattering assay, we show that the purified protein retains the ability to aggregate in the presence of divalent cations mirroring its assembly in vivo. Calcium ion alone is able to initiate this reaction and the rate of precipitation increases with calcium concentration. Magnesium alone is ineffective in this regard but, in combination, the two ions act synergistically. Strontium and barium can substitute for calcium, but higher concentrations of the former cations are required to produce an equivalent effect.  相似文献   

14.
Treatment of the eggs of the sea urchin with a 1 M solution of glycerol at fertilization allows the recovery from this solution of the protein released from the cortical granules, including that which would normally give rise to the hyaline layer. The calcium-gelable protein previously extracted from whole eggs and from isolated cortical material was found to be present in the glycerol solution, confirming its localization in the cortical granules and its role in the hyaline layer. Quantitative measurements on the eggs of two Hawaiian species, Colobocentrotus atratus and Pseudoboletia indiana, which have the widest variation in the gel protein content, demonstrated that a proportionate amount of this material was released at fertilization in these species, which correlates with the thickness of the hyaline layer in the two cases. In addition, the calcium-insoluble fraction of Sakai can be extracted from these eggs after removal of the hyaline protein by glycerol, showing that this is a different material. A simple method for the separation of the hyaline protein from the calcium-insoluble fraction in solution is provided.  相似文献   

15.
In sea urchin eggs fertilization is accompanied by cortical granule exocytosis, a secretory event thought to be initiated by release of intracellularly sequestered calcium. We have examined the effect of two drugs on this process: chlortetracycline (CTC), a known chelator of intracellular calcium, and 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an antagonist of intracellular calcium release in both skeletal and smooth muscle. Preincubation of eggs for 10 min with either CTC or TMB-8 blocked sperm entry, inhibited the burst of 45Ca2+ efflux normally seen postinsemination, and prevented fertilization envelope elevation. Half-maximal inhibition occurred with 200 microM CTC and 60 microM TMB-8. Electron microscopy confirmed that cortical granule exocytosis had been blocked, although inhibition was not due to a direct effect on exocytosis. CTC and TMB-8 had no effect on Ca2+-stimulated granule fusion in isolated egg cortices. Rather, these drugs block the early events in egg activation: sperm incorporation and triggering of exocytosis. These two effects appear to be independent since addition of either drug just before insemination permits sperm entry but inhibits calcium release and cortical granule exocytosis.  相似文献   

16.
Polymerization of actin from sea urchin eggs   总被引:3,自引:0,他引:3  
  相似文献   

17.
A trypsin-like proteinase was localized within a single subcellular compartment of unfertilized Strongylocentrotus purpuratus eggs, the cortical granules. Homogenates of eggs were fractionated by rate-zonal centrifugation. Enzymatic markers were used to determine the distribution of mitochondria (cytochrome oxidase), yolk platelets (acid nitrophenyl phosphatase), and cortical granules (β-1, 3-glucanase) in the sucrose density gradient. A bimodal distribution pattern was obtained for aryl esterase activity (substrate: β-naphthyl acetate), with one peak in the microsomal and the other in the cortical granule fractions. The cortical granule enzyme was characterized as a trypsin-like proteinase, since it also hydrolyzed another typical tryptic substrate α-N-benzoyl-l-arginine ethyl ester and was completely inactivated by soybean trypsin inhibitor (SBTI). The aryl esterase activity in the microsomal fractions was not inhibited by SBTI, while 50% of the total aryl esterase activity in the original egg homogenate was inactivated by SBTI. The identity of the enzyme(s) responsible for the aryl esterase activity associated with the microsomal particles is unknown at present.The cortical granule proteinase functions in the elevation of the fertilization membrane and establishment of the block to polyspermy at fertilization. Arbacia punctulata eggs inseminated in the presence of trypsin inhibitors, SBTI or tosyl lysine chloromethyl ketone (TLCK), failed to elevate normal fertilization membranes and became heavily polyspermic.On the basis of these results and observations made by other investigators with a wide variety of biological systems, it is proposed that trypsin-like proteinases function in the discharge of secretory granules from all types of cells.  相似文献   

18.
19.
A transient rise in intracellular Ca2+ during fertilization is necessary for activation of the quiescent sea urchin egg. Several mechanisms contribute to the rise in Ca2+ including influx across the egg plasma membrane and release from intracellular stores. The egg contains both IP3-sensitive and -insensitive Ca2+ release mechanisms and in this study we have used single-cell spectrofluorimetry to examine the effects of caffeine and ryanodine on Ca2+ release in eggs preloaded with fura 2. Caffeine induced a small Ca2+ release that was insensitive to heparin or ruthenium red. Ca2+ liberation by caffeine could be augmented by prior treatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase. Variable Ca2+ releases were observed in response to microinjection of ryanodine. The action of ryanodine appeared to be enhanced by prior injection of heparin and partially inhibited by ruthenium red. The release of Ca2+ by caffeine or ryanodine was generally insufficient to trigger cortical granule exocytosis, thus these eggs could be fertilized and a second Ca2+ release during fertilization was measured. Unlike the caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release mechanism in somatic cells, the graded responses in eggs suggested this caffeine- and ryanodine-sensitive release mechanism is not sensitive to sudden changes in Ca2+. Thus we could examine the combined actions of caffeine and ryanodine on Ca2+ release, which were synergistic. Caffeine treatment of ryanodine-injected eggs or ryanodine injection of caffeine-treated eggs stimulated a Ca2+ release significantly larger than the release by either drug independently. The experiments presented here suggest that sea urchin eggs liberate Ca2+ in response to caffeine and ryanodine; however, the regulation of this release differs from that described for caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release of somatic cells.  相似文献   

20.
We have used an antibody against the ryanodine receptor/calcium release channel of skeletal muscle sarcoplasmic reticulum to localize a calcium release channel in sea urchin eggs. The calcium release channel is present in less than 20% of immature oocytes, where it does not demonstrate a specific cytoplasmic localization, while it is confined to the cortex of all mature eggs examined. This is in contrast to the cortical and subcortical localization of calsequestrin in mature and immature eggs. Immunolocalization of the calcium release channel reveals a cortical reticulum or honeycomb staining network that surrounds cortical granules and is associated with the plasma membrane. The network consists of some immunoreactive electron-dense material coating small vesicles and elongate cisternae of the endoplasmic reticulum. The fluorescent reticular staining pattern is lost when egg cortices are treated with agents known to affect sarcoplasmic reticulum calcium release and induce cortical granule exocytosis (ryanodine, calcium, A-23187, and caffeine). An approximately 380-kD protein of sea urchin egg cortices is identified by immunoblot analysis with the ryanodine receptor antibody. These results demonstrate: (a) the presence of a ryanodine-sensitive calcium release channel that is located within the sea urchin egg cortex; (b) an altered calcium release channel staining pattern as a result of treatments that initiate the cortical granule reaction; and (c) a spatial and functional dichotomy of the ER which may be important in serving different roles in the mobilization of calcium at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号