首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two forms of sucrose-phosphate synthase (EC 2.4.1.14) were resolved from leaves of three species, maize (Zea mays L. cv. Pioneer 3184), soybean (Glycine max (L.) Merr., cv. Ransom) and spinach (Spinacia oleracea L. cv. Resistoflay) by hydroxyapatite Ultrogel chromatography, using a 75-mM (designated peak 1) and 250-mM (peak 2) K-phosphate discontinuous-gradient elution. Rechromatography of the two forms showed that they were not readily interconvertible. The distribution of activity between the two forms differed among species and changed during purification of the enzyme. Recovery of peak-1 activity was specifically lowered when maize leaf extracts were prepared in the absence of magnesium, indicating that the two forms may differ in stability. In addition, the forms of the enzyme from maize differed in the extent of glucose-6-phosphate activation. These results provide evidence for the existence of multiple forms of sucrose-phosphate synthase in leaves of different species and that the forms differ in regulatory properties.Abbreviations Fru6P fructose 6-phosphate - Glc6P glucose 6-phosphate - HAU hydroxyapatite Ultrogel - Pi inorganic phosphate - SPS sucrose-phosphate synthase - UDP uridine 5-diphosphate - UDPG uridinediphosphate glucose Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10511 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. Supported in part by USDA Competitive Research Grant No. 85-CRCR-1-1568  相似文献   

2.
Net photosynthesis (CER), assimilate-export rate, sucrose-phosphate-synthase (EC 2.4.1.14) activity, fructose-2,6-bisphosphate content, and 6-phosphofructo-2-kinase (EC 2.7.1.105) activity were monitored in leaves of soybean (Glycine max (L.) Merr.) plants during a 12:12 h day-night cycle, and in plants transferred, at regular intervals throughout the diurnal cycle, to an illuminated chamber for 3 h. In the control plants, assimilate-export rate decreased progressively during the day whereas in transferred plants, a strongly rhythmic fluctuation in both CER and export rate was observed over the 24-h test period. Two maxima during the 24-h period for both processes were observed: one when plants were transferred during the middle of the normal light period, and a second when plants were transferred during the middle of the normal dark period. Overall, the results indicated that export rate was correlated positively with photosynthetic rate and sucrose-phosphate-synthase activity, and correlated negatively with fructose-2,6-bisphosphate levels, and that coarse control and fine control of the sucrose-formation pathway are coordinated during the diurnal cycle. Diurnal changes in sucrose-phosphate-synthase activity were not associated with changes in regulatory properties (phosphate inhibition) or substrate affinities. The biochemical basis for the diurnal rhythm in sucrose-phosphate-synthase activity in the soybean leaf thus appears to involve changes in the amount of the enzyme or a post-translational modification that affects only the maximum velocity.Abbreviations FBPase fructose-1,6-bisphosphatase - SPS sucrose-phosphate synthase - F26BPase fructose-2,6-bisphosphatase - PGI glucose-6-phosphate isomerase - F6P fructose-6-phosphate - F26BP fructose-2,6-bisphosphate - G6P glucose-6-phosphate - CER net carbon exchange rate - Pi inorganic phosphate - DHAP dihydroxyacetone phosphate - PGA glycerate 3-phosphate - F6P,2-kinase 6-phosphofructo-2-kinase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10503 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601  相似文献   

3.
A dot-blot technique was developed using monoclonal antibodies to measure, rapidly and accurately, the amount of sucrose-phosphate synthase (SPS; EC 2.4.1.14) protein present in a crude extract from spinach (Spinacia oleracea L. cv. Dark Green Bloomsdale) leaves; this was compared with SPS activity in this material. During leaf development, increased SPS activity followed closely the increase in enzyme-protein level, indicating denovo synthesis or altered turn-over rates for SPS. In contrast, activation of SPS by illumination of leaves or by mannose treatment of leaf discs in the dark (M. Stitt et al. Planta 174, 217–230) occurred without a significant change in the level of enzyme protein. Since conditions which altered SPS activity did not affect immunoprecipitation or mobility of the 120-kilodalton (kDa) subunit of the enzyme during denaturing gel electrophoresis, some form of protein modification other than proteolysis must be involved. Overall, the results indicate that regulation of SPS activity can involve changes in the level of enzyme protein and-or covalent modification.Abbreviations kDa kilodalton - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - SPS sucrosephosphate synthase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Reseach Service, Raleigh. Paper No. 11789 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA  相似文献   

4.
The aim of this work was to identify which aspects of photosynthetic metabolism respond most sensitively to leaf water deficit. Spinach (Spinacia oleracea L.) leaf discs were floated on sorbitol concentrations of increasing molarity and changes of the protoplast volume were estimated using [14C]sorbitol and 3H2O penetration. Detached leaves were also wilted until 10% of their fresh weight was lost. Photosynthesis was studied at very high external CO2 concentrations, to eliminate the effect of closing stomata. There was no large inhibition of CO2 fixation after wilting leaves, or until the external water deficit was greater than-1.2 MPa. However, partitioning changed markedly at these moderate water deficits: more sucrose and less starch was made. When an inhibition of CO2-saturated photosynthesis did appear at a water deficit of-2.0 MPa and above, measurements of chlorophyll-fluorescence quenching and metabolite levels showed the thylakoid reactions were not especially susceptible to short-term water stress. The inhibition was accompanied by a small increase of the triose phosphate: ribulose-1,5-bisphosphate ratio, showing regeneration of ribulose-1,5-bisphosphate was affected. However, there was also a general increase of the estimated concentrations of most metabolites, indicating that there is no specific site for the inhibition of photosynthesis. Increasing water deficit led to a large increase of fructose-2,6-bisphosphate. This is explained in terms of a simultaneous increase of fructose-6-phosphate and inorganic phosphate as the cell shrinks. The high fructose-2,6-bisphosphate led to the accumulation of triose phosphates, and the potential significance of this for protection against photoinhibition is discussed. There was an increase in the extractable activity of sucrose-phosphate synthase. This was only detected when the enzyme was assayed in conditions which distinguish between different kinetic forms which have previously been identified in spinach leaves. It is proposed that activation of sucrose-phosphate synthase is one of the first sites at which spinach leaves respond to a rising water deficit. This could be of importance for osmoregulation.Abbreviations Chl chlorophyll - Fru1,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA glycerate-3-phosphate - Pi inorgamic phosphate - Ru1,5bisP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - triose-P sum of glyceraldehyde-3-phosphate and dehydroxyacetone phosphate - UDPGlc uridine diphosphoglucose  相似文献   

5.
Sucrose-phosphate synthase (SPS) from leaves of spinach (Spinacia oleracea L.) has been purified to homogeneity by a procedure involving precipitation with polyethylenglycol and chromatography over diethylaminoethylcellulose, Ω-aminohexylagarose, Mono Q and Blue Affinity columns. The purification factor was 838 and the final specific activity was 1.3 nkat · (mg protein)?1. On denaturing gels the major polypeptide was 120 kDa but there was also a variable amount of smaller polypeptides in the range of 90 to 110 kDa. A new activity stain was developed to allow visualization of SPS in gels. The holoenzyme had a molecular weight of about 240 and 480 kDa in native gels and Sepharose, respectively. A high-titre polyclonal antibody was obtained which reacted with SPS from other species including wheat, potato, banana and maize. Screening of a spinach-leaf cDNA-expression library with the antibody allowed the isolation of a full-length clone. Sequencing revealed a predicted molecular weight of 117649 Da, and considerable homology with the recently published sequence for maize leaf (Worrell et al. 1991, Plant Cell 3, 1121–1130). Expression of the spinach-leaf SPS gene in Escherichia coli resulted in biological activity, revealed by the presence of SPS activity in extracts and the accumulation of sucrose-6-phosphate and sucrose in the bacteria.  相似文献   

6.
The relationship between the gas-exchange characteristics of spinach (Spinacia oleracea L.) leaves and the activation state of sucrose-phosphate synthase was examined at different intercellular partial pressures of CO2 at two different photon flux densities. There was a strong positive correlation between the activation state of sucrose-phosphate synthase and the assimilation rate. The relationship was the same at both photon flux densities, indicating that the activation state of the enzyme is determined by a product of carbon assimilation, rather than directly by light.Abbreviations A assimilation rate for CO2 - p i intercellular CO2pressure - PFD photon flux density - SPS sucrose-phosphate-synthase - Glc6P glucose-6-phosphate - Fru6P fructose-6-phosphate A.B. was the recipient of a visiting fellowship from the National Research Council of the Italy. This work was also supported by the Science and Engineering Research Council and the Agricultural and Food Research Council, UK.  相似文献   

7.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

8.
Control of photosynthate partitioning in spinach leaves   总被引:6,自引:0,他引:6  
Experiments were carried out to estimate the elasticity coefficients and thence the distribution of control of sucrose synthesis and photosynthate partitioning between cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase (SPS), by applying the dualmodulation method of Kacser and Burns (1979, Biochem. Soc. Trans. 7, 1149–1161). Leaf discs of spinach (Spinacia oleracea L.) were harvested at the beginning and end of the photoperiod and illuminated at five different irradiances to alter (i) the extent of feedback inhibition and (ii) the rate of photosynthesis. The rate of CO2 fixation, sucrose synthesis and starch synthesis were measured and compared with the activation of SPS, and the levels of fructose-2,6-bisphosphate (Fru2,6bisP) and metabolites. Sucrose synthesis increased progressively with increasing irradiance, accompanied by relatively large changes of SPS activity and Fru2,6bisP, and relatively small changes of metabolites. At each irradiance, leaf discs harvested at the end of the photoperiod had (compared with leaf discs harvested at the beginning of the photoperiod) a decreased rate of sucrose synthesis, increased starch synthesis, decreased SPS activity, increased Fru2,6bisP, a relatively small (20%) increase of most metabolites, no change of the glycerate-3-phosphate: triose-phosphate ratio, a small increase of NADPmalate dehydrogenase activation, but no inhibition of photosynthesis. The changes of sucrose and starch synthesis were largest in low light, while the changes of SPS and Fru2,6bisP were as large, or even larger, in high light. It is discussed how these results provide evidence that the control of sucrose synthesis is shared between SPS and fructose-1,6-bisphosphatase, and provide information about the in-vivo response of these enzymes to changes in the levels of their substrates and effectors. At low fluxes, feedback regulation is very effective at altering partitioning. In high light, changes of SPS activation and Fru2,6bisP can be readily overriden by increasing levels of metabolites.  相似文献   

9.
The activity and intercellular distribution of sucrose-phosphate synthase (SPS; EC 2.4.1.14) were determined in fully expanded leaves from a range of C4 plants. In Zea mays L. and Atriplex spongiosa F. Muell., SPS was located almost exclusively in the mesophyll cells. In other species, SPS was found in both cell types, with the activity in the bundle sheath cells ranging from 5% of the total leaf activity in Echinochloa crus-galli (L.) Beauv. to 35% in Sorghum bicolor Moench. At the end of the light period, starch was found only in the bundle sheath cells in all of the species examined. There appears to be little correlation between C4-acid decarboxylation type and the location of sucrose and starch synthesis in the leaves of C4 plants. Received: 18 October 1996 / Accepted: 20 November 1996  相似文献   

10.
Photosynthesis, leaf assimilate partitioning, flowering, and fruiting were examined in two lines of Lycopersicon esculentum Mill. transformed with a gene coding for sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from Zea mays L. expressed from a tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit promoter. Plants were grown at either 35 or 65 Pa CO2 and high light (1000 mol photons·m–2·s–1). Limiting and maximum SPS activities were significantly greater (up to 12 times) in the leaves of SPS-transformed lines for all treatments. Partitioning of carbon into sucrose increased 50% for the SPS transformants. Intact leaves of the control lines exhibited CO2-insensitivity of photosynthesis at high CO2 levels, whereas the SPS transformants did not exhibit CO2-insensitivity. The O2-sensitivity of photosynthesis was also greater for the SPS-transformed lines compared to the untransformed control when measured at 65 Pa CO2. These data indicate that the SPS transformants had a reduced limitation on photosynthesis imposed by end-product synthesis. Growth at 65 Pa CO2 resulted in reduced photosynthetic capacity for control lines but not for SPS-transformed lines. When grown at 65 Pa CO2, SPS transformed lines had a 20% greater photosynthetic rate than controls when measured at 65 Pa CO2 and a 35% greater rate when measured at 105 Pa CO2. Photosynthetic rates were not different between lines when grown at 35 Pa CO2. The time to 50% blossoming was reduced and the total number of inflorescences was significantly greater for the SPS transformants when grown at either 35 or 65 Pa CO2. At 35 Pa CO2, the total fruit number of the SPS transformants was up to 1.5 times that of the controls, the fruit matured earlier, and there was up to a 32% increase in total fruit dry weight. Fruit yield was not significantly different between the lines when grown at 65 Pa CO2. Therefore, there was not a strict relationship between yield and leaf photosynthesis rate. Flowering and fruit development of the SPS-transformed lines grown at 35 Pa CO2 showed similar trends to the controls grown at 65 Pa CO2. Incidences of blossom-end rot were also reduced in the SPS-transformed lines. These data indicate that altering starch/sucrose partitioning by increasing the capacity for sucrose synthesis can affect acclimation to elevated CO2 partial pressure and flowering and fruiting in tomato.Abbreviations DAS days after seeding - nptII neomycin phos-photransferase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - SSU Rubisco small subunit This research was supported by U.S. Department of Energy grant FG02-87ER13785. B.J.M. thanks the Natural Sciences and Engineering Research Council of Canada for financial support. We are grateful to Toni A. Voelker (Calgene Inc.) for supplying tomato seeds and valuable advice.  相似文献   

11.
Wild-type and mutant plants of barley (Hordeum vulgare L. cv. Maris Mink) lacking activities of chloroplastic glutamine synthetase (GS) and of ferredox-in-dependent glutamate synthase (Fd-GOGAT) were crossed to generate heterozygous plants. Crosses of the F2 generation containing GS activities between 47 and 97 of the wild-type and Fd-GOGAT activities down to 63 of the wild-type have been selected to study the control of both enzymes on photorespiratory carbon and nitrogen metabolism. There were no major pleiotropic effects. Decreased GS had a small impact on leaf protein and the total activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The activation state of Rubisco was unaffected in air, but a decrease in GS influenced the activation state of Rubisco in low CO2. In illuminated leaves, the amino-acid content decreased with decreasing GS, while the content of ammonium rose, showing that even small reductions in GS limit ammonium re-assimilation and may bring about a loss of nitrogen from the plants, and hence a reduction in protein and Rubisco. Leaf amino-acid contents were restored, and ammonium and nitrate contents decreased, by leaving plants in the dark for 24 h. The ratios of serine to glycine decreased with a decrease in GS when plants were kept at moderate photon flux densities in air, suggesting a possible feedback on glycine decarboxylation. This effect was absent in high light and low CO2. Under these conditions ammonium contents exhibited an optimum and amino-acid contents a minimum at a GS activity of 65 of the wild-type, suggesting an inhibition of ammonium release in mutants with less than 65 GS. The leaf contents of glutamate, glutamine, aspartate, asparagine, and alanine largely followed changes in the total amino-acid contents determined under different environmental conditions. Decreased Fd-GOGAT resulted in a decrease in leaf protein, chlorophyll, Rubisco and nitrate contents. Chlorophyll a/b ratios and specific leaf fresh weight were lower than in the wild-type. Leaf ammonium contents were similar to the wild-type and total leaf amino-acid contents were only affected in low CO2 at high photon flux densities, but mutants with decreased Fd-GOGAT accumulated glutamine and contained less glutamate.Abbreviations Chl chlorophyll - FBPase fructose-1,6-bisphosphatase - Fd-GOGAT ferredoxin-dependent glutamine: 2-oxoglutarate aminotransferase - GS glutamine synthetase - PEP phosphoenolpyruvate - PFD photon flux density - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase This research was jointly supported by the Agricultural and Food Research Council and the Science and Engineering Research Council, U.K. in the programme on Biochemistry of Metabolic Regulation in Plants (PG50/555).  相似文献   

12.
When sucrose-phosphate synthase (SPS; EC 2.4.1.14) is expressed in tomato (Lycopersicon esculentum Mill.) from a ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit (rbcS) promoter, yields are often unchanged but when SPS is expressed from a Cauliflower Mosaic Virus 35S promoter, yield is enhanced up to 80%. Two explanations for this phenomenon are (i) that expression of SPS in tissues other than leaves accounts for the increased yield or (ii) that the lower level of expression directed by the 35S promoter is more beneficial than the high level of expression directed by the rbcS promoter. To test the first hypothesis, we conducted a reciprocal graft experiment, which showed that root SPS activity did not substantially affect growth. To test the second hypothesis, we conducted a field trial using a backcrossed, segregating, population of SPS-transformed plants derived from 35S and rbcS lines. The optimal dose of SPS activity for growth was approximately twice that of the wild type regardless of which promoter was used. The effect of SPS on growth was the result of a shift in partitioning of carbon among starch, sucrose, and ionic compounds (primarily amino acids), rather than of an increase in net photosynthesis. Excessive SPS activity resulted in a decreased rate of amino acid synthesis, which could explain the non-linear response of plant growth to the level of SPS expression. Received: 23 May 2000 / Accepted: 24 July 2000  相似文献   

13.
14.
Photosynthesis and photosynthate partitioning in leaves of Sorghum bicolor (L.) Moench exhibited a cyclic dependence on the duration (10–62 h) of dark periods inserted prior to bright light test periods (550 mol·s-1·m-2, photosynthetic photon flux). Maximum rates of net photosynthesis and of accumulation of starch and soluble sugars were, in the order given, two-, three- and fourfold greater than minimum values. Between 14 and 53% of photosynthate was retained in leaves depending on the length of the dark period. These changes were sufficient to account for the previously described stimulatory effect of short daylengths (i.e., long nights) on carbohydrate accumulation in leaves (N.J. Chatterton and J.E. Silvius, 1980, Physiol. Plant. 49, 141–144). The freerunning periods for the rhythmic dependence on darkness, determined either directly or by curve fitting, were about 24 h for net photosynthesis, 23 h for starch accumulation, and 26 h for solublesugar cccumulation. The deviation from period lengths of 24 h for carbohydrate accumulation indicates that these rhythms are probably endogenous and circadian. Initial maxima were observed after 14 h of darkness for photosynthesis, after 18–22 h for starch, and after 26 h for soluble sugars. The differences in period length and phase indicate that at least three separate rhythms underlie the dependence of photosynthate partitioning in Sorghum on darkness. Periods of low leaf dry-matter accumulation coincided approximately with periods of high net photosynthesis. As a result, maximum photoassimination and maximum export were synchronized and, furthermore, occurred at about the same time as expected light periods.Abbreviations and symbols DD (the nth h of) continuous darkness - LT Iocal time of day - free-running period length This paper is dedicated to Professor Wilhelm Nultsch on his 60 th birthdayMention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

15.
(i) Sucrose-phosphate synthase (SPS) was purified 40-fold from stored potato (Solanum tuberosum L.) tubers to a final specific activity of 33–70 nkat·(mg protein)–1 via batch elution from diethylaminoethyl (DEAE)-sephacel, polyethylene glycol (PEG) precipitation and Mono Q anion-exchange chromatography. (ii) Immunoblotting revealed a major and a minor band with molecular weights of 124.8 kDa and 133.5 kDa, respectively. Both bands were also present in extracts prepared in boiling SDS to exclude proteolysis. No smaller polypeptides were seen, except when the preparations were incubated before application on a polyacrylamide gel. (iii) The enzyme preparation was activated by glucose-6-phosphate and inhibited by inorganic phosphate. Both effectors had a large effect on the K m (fructose-6-phosphate) and the K m (uridine-5-diphosphoglucose) with phosphate acting antagonistically to glucose-6-phosphate. (iv) Preincubation of potato slices with low concentrations of okadaic acid or microcystin resulted in a three- to fourfold decrease in the activity of SPS when the tissue was subsequently extracted and assayed. The decrease was especially marked when the assay contained low concentrations of substrates and glucose-6-phosphate, and inorganic phosphate was included. Preincubation with mannose or in high osmoticum resulted in an increase of SPS activity. (v) Analogous changes were observed in germinating Ricinus communis L. seedlings. After preincubation of the cotyledons in glucose, high SPS activity could be measured, whereas okadaic acid, omission of glucose, or addition of phosphate or sucrose led to a large decrease of SPS activity in the selective assay. (vi) It is argued that SPS from non-photosynthetic tissues is regulated by metabolites and by protein phosphorylation in an analogous manner to the leaf enzyme.Abbreviations Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PGI phosphoglucose isomerase - PP2A phosphoprotein phosphatase 2A - PEG polyethyleneglycol - SPS sucrose-phosphate synthase - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Forschungsgemeinschaft, the BMFT and Sandoz AG, Basel, Switzerland. We are grateful to Prof. E. Beck (Pflanzenphysiologie, Bayreuth, Germany) for providing us with laboratory facilities, and to Dr. U. Sonnewald (Institut für Genbiologische Forschung, Berlin, Germany) for many discussions and providing us with unpublished data.  相似文献   

16.
Sucrose-phosphate synthase (SPS, E.C. 2.4.1.14) from spinach (Spinacia oleracea L.) was partially purified and the inhibition of the enzyme reaction by 1-deoxynojirimycin and Cibacron blue F3G-A analyzed. Cibacron blue was a high-affinity competitive inhibitor with respect to the substrate UDPglucose (Ki = 80 nM) and a mixed-type inhibitor with respect to fructose-6-phosphate. 1-Deoxynojirimycin was a mixed-type inhibitor of SPS with respect to UDPglucose [Ki(EI) = 5.8 mM] and a uncompetitive inhibitor with respect to fructose 6-phosphate. These results are discussed in relation to the mechanism of the reaction catalysed by SPS and the secondary structure of the enzyme.Abbreviations DN 1-deoxynojirimycin - Glc6P glucose-6-phosphate - Fru6P fructose-6-phosphate - SPS sucrose-phosphate synthase - UDPG1c UDPglucose We are grateful to M. Stitt (University of Heidelberg, Germany) for many helpful discussions and J. Harr and P. Bocion (both SANDOZ AGRO, Switzerland) for supporting the work.  相似文献   

17.
18.
19.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

20.
The activity of NAD(P)H-dependent glutamate synthase (E.C. 1.4.1.14) has been demonstrated in extracts from etiolated shoots of pea (Pisum sativum L.) and barley (Hordeum vulgare L.). This activity does not significantly alter upon greening of the etiolated shoots, and is at a similar level in light-grown material. Ferredoxin-dependent glutamate synthase (E.C. 1.4.7.1) has low activity in etiolated shoots but increases rapidly on greening. In light grown leaves ferredoxin-dependent activity is 30–40-fold higher than NAD(P)H-dependent activity. It is not considered that the NAD(P)H-dependent glutamate synthase plays an important role in ammonia assimilation in the photosynthetic tissue of higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号