首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small heat shock proteins are a ubiquitous and diverse family of stress proteins that have in common an alpha-crystallin domain. Mycobacterium tuberculosis has two small heat shock proteins, Acr1 (alpha-crystallin-related protein 1, or Hsp16.3/16-kDa antigen) and Acr2 (HrpA), both of which are highly expressed under different stress conditions. Small heat shock proteins form large oligomeric assemblies and are commonly polydisperse. Nanoelectrospray mass spectrometry showed that Acr2 formed a range of oligomers composed of dimers and tetramers, whereas Acr1 was a dodecamer. Electron microscopy of Acr2 showed a variety of particle sizes. Using three-dimensional analysis of negative stain electron microscope images, we have shown that Acr1 forms a tetrahedral assembly with 12 polypeptide chains. The atomic structure of a related alpha-crystallin domain dimer was docked into the density to build a molecular structure of the dodecameric Acr1 complex. Along with the differential regulation of these two proteins, the differences in their quaternary structures demonstrated here supports their distinct functional roles.  相似文献   

2.
The Hrp pilus plays an essential role in the long-distance type III translocation of effector proteins from bacteria into plant cells. HrpA is the structural subunit of the Hrp pilus in Pseudomonas syringae pv. tomato (Pst) DC3000. Little is known about the molecular features in the HrpA protein for pilus assembly or for transporting effector proteins. From previous collections of nonfunctional HrpA derivatives that carry random pentapeptide insertions or single amino acid mutations, we identified several dominant-negative mutants that blocked the ability of wild-type Pst DC3000 to elicit host responses. The dominant-negative phenotype was correlated with the disappearance of the Hrp pilus in culture and inhibition of wild-type HrpA protein self-assembly in vitro. Dominant-negative HrpA mutants can be grouped into two functional classes: one class exerted a strong dominant-negative effect on the secretion of effector proteins AvrPto and HopPtoM in culture, and the other did not. The two classes of mutant HrpA proteins carry pentapeptide insertions in discrete regions, which are interrupted by insertions without a dominant-negative effect. These results enable prediction of possible subunit-subunit interaction sites in the assembly of the Hrp pilus and suggest the usefulness of dominant-negative mutants in dissection of the role of the wild-type HrpA protein in various stages of type III translocation: protein exit across the bacterial cell wall, the assembly and/or stabilization of the Hrp pilus in the extracellular space, and Hrp pilus-mediated long-distance transport beyond the bacterial cell wall.  相似文献   

3.
Neisseria meningitidis is a frequent commensal of the human nasopharynx causing severe invasive infections in rare cases. A functional two-partner secretion (TPS) system in N. meningitidis, composed of the secreted effector protein HrpA and its cognate transporter HrpB, is identified and characterized in this study. Although all meningococcal strains harbor at least one TPS system, the hrpA genes display significant C-terminal sequence variation. Meningococcal genes encoding the TPS effector proteins and their transporters are closely associated and transcribed into a single mRNA. HrpA proteins are translocated across the meningococcal outer membrane by their cognate transporters HrpB and mainly released into the environment. During this process, HrpA is proteolytically processed to a mature 180-kDa form. In contrast to other known TPS systems, immature HrpA proteins are stable in the absence of HrpB and accumulate within the bacterial cell. A small percentage of mature HrpA remains associated with the bacteria and contributes to the interaction of meningococci with epithelial cells.  相似文献   

4.
A basic ribosomal phosphoprotein of 30,000 molecular weight was rapidly dephosphorylated in cultured Drosophila melanogaster cells heat shocked at 37 degrees C. The protein was associated with the 40S ribosomal subunit and had an electrophoretic mobility similar to that of purified rat liver protein S6 on basic two-dimensional polyacrylamide gels as well as a similar partial proteolysis peptide map. In logarithmically growing cultures, this D. melanogaster S6 protein appeared to have a single phosphorylated species consisting of 30 to 40% of the total cellular S6. Thus, the nearly complete dephosphorylation of this protein observed in heat shock involves a large fraction of the cellular S6. The significance of this dephosphorylation in the expression of the heat shock response was investigated by examining the phosphorylation status of S6 in recovery from heat shock and in response to chemical inducers of the heat shock response. During recovery from a 30-min heat shock, the recovery of normal protein synthesis was almost complete in 2 to 4 hr, whereas there was no significant rephosphorylation of S6 for 8 h. Two chemical inducers of the heat shock response, canavanine and sodium arsenite, induced the synthesis of heat shock proteins in D. melanogaster cells. Sodium arsenite also caused an inhibition of normal protein synthesis similar to that observed in heat shock. Neither agent, however, caused significant dephosphorylation of S6. These results suggest that the dephosphorylation of S6, although invariably observed in heat-shocked cells, may in some cases be dissociated from both the induction of heat shock protein synthesis and the turnoff of normal protein synthesis which occur in a heat shock response.  相似文献   

5.
Summary Changes in phosphorylation of ribosomal protein S6 during heat shock, induction of thermotolerance and recovery from heat shock at different stages of Blastocladiella emersonii development were investigated. Independently of the initial state of S6 phosphorylation (maximal or intermediate), a rapid and complete dephosphorylation of S6 is induced by heat shock and S6 remains unphosphorylated during the acquired thermotolerance. During recovery from heat shock rephosphorylation of S6 occurs always to the levels characteristic of that particular stage, coincidently with the turn off of heat shock protein synthesis.  相似文献   

6.
7.
D A Walsh  V B Morris 《Teratology》1989,40(6):583-592
The effects of heat shock on cell cycling in the mammalian neuroectoderm were determined by applying heat shocks to cultured rat embryos at the neural plate stage, as part of a study on the teratogenic effects of heat shock on neural development. The heat shocks had been characterized previously (Walsh et al.: Teratology 36:181-191, 1987) with respect to their effects on the gross morphological development of the rat embryos. The effects on cell cycling were observed in DNA histograms of neural plate cells recorded in a flow cytometer after staining with DAPI. The mild heat shock (42 degrees C for 10 min) arrested cells at entry to S phase. The teratogenic heat shock (43 degrees C for 7.5 min) arrested cells at entry to S phase also but for a longer time and inhibited cycling through S phase. After each arrest, a synchronized peak of cells later entered S phase and progressed through the cycle. The induced-thermotolerance heat shock, which was the mild heat shock followed after an interval by the teratogenic heat shock, showed that pre-treatment with the mild heat shock reduced the magnitude of the response to the teratogenic heat shock. The cell-cycle inhibitor ICRF 159 showed the effects on cycling rates of the heat-shock treatments. The arrest of cells at entry to S phase by heat shock may function to prevent cells entering DNA synthesis under non-optimal conditions. We report estimates of proportions of non-proliferative cells in the neural plate of the rat embryos.  相似文献   

8.
We have studied the consequences of heat shock on 20S/26S proteasome activity and activation, the proteasomal subunit composition, proteasome assembly, subunit mRNA stability as well as on the intracellular distribution of proteasomes. Our data show that heat shock locks 20S proteasomes in their latent inactive state and impairs further activation of the 26S proteasome by ATP. Proteasome mRNA levels are decreased after heat shock and the assembly of the proteasome complex is inhibited. Heat shock also induces a rapid reorganisation of the cellular distribution of the proteasome which appears to be connected with proteasome activity and the change of the cellular architecture after heat shock.  相似文献   

9.
10.
11.
12.
Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite.  相似文献   

13.
Synchronized cells of the Harding Passey melanoma grown in culture were given a heat shock treatment of 44° C for 36 min. Thymidine incorporation was measured at frequent intervals after heat shock to determine the time of onset of the next DNA synthetic period. If the heat shock was given at the end of G1, the following S was delayed by 20 hr. Heating at other times in the cell cycle resulted in an even longer interval before the onset of S. the end of G1 was also the most resistant to hyperthermic killing and to the effect of heat on the magnitude of thymidine incorporation in the following S. Heating the cells a second time did not repeat the effect of the first treatment unless the second heat shock treatment was at a considerably higher temperature. Thus thermotolerance to heat shock killing also applies to cell-cycle delay.  相似文献   

14.
During depletion of 4.5S RNA, cells of Escherichia coli displayed a heat shock response that was simultaneous with the first detectable effect on ribosome function and before major effects on cell growth. Either 4.5S RNA is involved directly in regulating the heat shock response, or this particular impairment of protein synthesis uniquely induces the heat shock response. Several hours later, lambda prophage was induced and the cells lysed.  相似文献   

15.
The heat shock proteins, labelled in vivo with [35S]methionine, were separated by sodium dodecylsulphate-polyacrylamide gel electrophoresis and fingerprinted after tryptic digestion. Eight distinct heat shock polypeptides are characterized in this way. Heat shock messenger RNAs were isolated and partially purified. Assayed in vitro for protein synthesis, they were found to code for heat shock polypeptides. Some parameters of the kinetics of in vivo synthesis of the heat shock proteins are presented.  相似文献   

16.
17.
Hypersensitive reaction and pathogenicity (hrp) genes are required for Pseudomonas syringae pv. tomato (Pst) DC3000 to cause disease in susceptible tomato and Arabidopsis thaliana plants and to elicit the hypersensitive response in resistant plants. The hrp genes encode a type III protein secretion system known as the Hrp system, which in Pst DC3000 secretes HrpA, HrpZ, HrpW, and AvrPto and assembles a surface appendage, named the Hrp pilus, in hrp-gene-inducing minimal medium. HrpA has been suggested to be the Hrp pilus structural protein on the basis of copurification and mutational analyses. In this study, we show that an antibody against HrpA efficiently labeled Hrp pili, whereas antibodies against HrpW and HrpZ did not. Immunogold labeling of bacteria-infected Arabidopsis thaliana leaf tissue with an Hrp pilus antibody revealed a characteristic lineup of gold particles around bacteria and/or at the bacterium-plant contact site. These results confirm that HrpA is the major structural protein of the Hrp pilus and provide evidence that Hrp pili are assembled in vitro and in planta.  相似文献   

18.
We have identified and purified a 58-kilodalton protein of Tetrahymena thermophila whose synthesis during heat shock parallels that of the major heat shock proteins. This protein, hsp58, was found in both non-heat-shocked as well as heat-shocked cells; however, its concentration in the cell increased approximately two- to threefold during heat shock. The majority of hsp58 in both non-heat-shocked and heat-shocked cells was found by both cell fractionation studies and immunocytochemical techniques to be mitochondrially associated. During heat shock, the additional hsp58 was found to selectively accumulate in mitochondria. Nondenatured hsp58 released from mitochondria of non-heat-shocked or heat-shocked cells sedimented in sucrose gradients as a 20S to 25S complex. We suggest that this protein may play a role in mitochondria analogous to the role the major heat shock proteins play in the nucleus and cytosol.  相似文献   

19.
Heat shock response of murine Chlamydia trachomatis.   总被引:18,自引:4,他引:14       下载免费PDF全文
  相似文献   

20.
Effects of heat shock on the biosynthesis of antibiotics, actinomycin C (in cultures of Streptomyces sp. 26-115 and S. chrysomallus 23209) and antibiotics of the nonactin group (in the culture of S. werraensis 1365) were studied. After heat shock, the formation of antibiotics of the nonactin group and actinomycin C were shown to increase by 30% and 27%, respectively, in comparison to control values. Thus, heat shock stimulates the biosynthesis of antibiotics in all three strains of streptomyces studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号