首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Synthesis of RNA in neurons of the hypoglossal nerve nucleus after axonal section was studied by means of [5-3H]uridine administration and radioautographic counting techniques in mice. The results of the experiments were evaluated by counts of silver grains over the nucleoplasm and cytoplasm of the neurons. RNA synthesis was greater in neurons after axonal section, and this increase was evident from 12 hr after the operation. The greatest increases in the operated side were observed in the 1st, 2nd and 3rd days after operation. In the 7th and 14th days RNA synthesis was still greater in the hypoglossal nucleus of the sectioned nerve but the difference in the control nucleus was not so striking. In the 30th day synthesis of RNA in left and right hypoglossal nuclei was comparable.  相似文献   

4.
Abstract— Acetylcholine is synthesized and stored in the nerve endings from which the liberation of the nerve transmittor is regulated by the nerve activity. The aim of the present investigation was to measure the in vivo turnover of acetylcholine in this subcellular acetylcholine pool. This has been carried out by injecting labelled choline intravenously and then by measuring at different time intervals the ratio between labelled choline and acetylcholine in the fractions obtained after subcellular fractionation. It was found that the ratio radioactive choline to radioactive acetylcholine was the same (2:1) in whole brain and in the nerve ending fraction 2 to 20 min after injection. Since it was assumed that the same ratio is true also for the endogenous compounds the choline pool in the nerve terminals was considered to make up 13 nmoles/g brain. The results also indicate that plasma choline is rapidly equilibrated with the nerve terminals and transformed to acetylcholine at a rate of about 5 nmoles/g brain/min.  相似文献   

5.
The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell—the pinealocyte—is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals.  相似文献   

6.
兔心迷走神经传出放电有三种类型:1.与后膈神经传出发放同步的节律性放电。这种节律性发放包含两个时相,第一时相大致与膈神经传出放电同时起止,第二时相在膈神经传出发放后期或发放终止时出现。2.持续性放电,出现在上述节律性放电的间歇期。3.偶然出现的高幅高频暴发放电。这种放电出现时,膈神经传出放电即受到明显的压抑。开放预先夹闭的颈总动脉使心迷走神经传出放电增强。窒息、静脉注射肾上腺素使心迷走神经传出放电增强,心率减慢;扩张肺、过度通气、吸入亚硝酸异戊酯使心迷走神经传出放电减少,心率增快。  相似文献   

7.
再生神经中微管,神经丝与轴突截面积的变化   总被引:2,自引:0,他引:2  
用电镜及图象分析的方法研究了再生轴突中微管、神经丝与轴突截面积的变化,发现神经再生过程中微管及神经丝的密度增加,并与轴突截面积呈相关关系,而且微管的变化更早,更明显。由于微管参与了轴浆转运的机制,微管的增加提示其在神经再生中起了重要的作用。  相似文献   

8.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

9.
Chicken sciatic nerves undergo demyelination following intraneural injection of diphtheria toxin due to a lesion at the site of injection. Paresis occurs after 1 week and lasts for approx 3 weeks; at the height of the lesion we injected [14C]Ieucine into the ventral horn cells of the spinal cord and followed the axonal transport of fast flowing labelled proteins down the sciatic nerve fibres making measurements of flow rates at two different times. The results showed the fast flowing labelled proteins were blocked at the demyelination site. We measured total protein in the nerves and examined them histologically to confirm the lesion. Further studies are in progress on the post synaptic muscle cells and the impaired nerves.  相似文献   

10.
The degenerative changes of the synaptic regions after nerve section have been studied with the electron microscope in the interneuronal synapse of the ventral ganglion of the acoustic nerve of the guinea pig. Fixation with buffered osmic tetroxide was carried out 22, 44, and 48 hours after destruction of the cochlea on one side; the contralateral ganglion being used as control. The submicroscopic organization of normal axosomatic and axodendritic synapses is described. In the synaptic ending four morphological components are recognized: the membrane, the mitochondria, the synaptic vesicles (19, 20), and the cytoplasmic matrix. The intimate contact of glial processes with the endings and with the surface of the nerve cell is described. At the level of the synaptic junction there is a direct contact of the limiting membranes of the ending and of the cell body or dendrite. Both contacting membranes constitute the synaptic one with a total thickness of about 250 A. This membrane has regions of higher electron density where the synaptic vesicles come into intimate contact and fuse with it. Definite degenerative submicroscopic changes in the nerve endings were observed after 22 hours of destruction of the cochlea and were much more conspicuous after 44 and 48 hours. After 22 hours there is swelling of the ending and decreased electron density of the matrix. Most synaptic vesicles have disappeared or seem to undergo a process of clumping and dissolution. Some mitochondria also show signs of degeneration. After 44 hours the synaptic vesicles have practically disappeared; mitochondria are in different stages of lysis; the membrane of the ending becomes irregular in shape, and there is shrinkage and in some cases detachment of the ending. No changes in the postsynaptic cytoplasm were observed. These observations and particularly the rapid lysis of the synaptic vesicles are discussed in correlation with data from the literature indicating the early alteration of synaptic function and the biochemical changes occurring after section of the afferent nerve. The hypothesis that the synaptic vesicles may be carriers of acetylcholine or other active substances (19, 20) and that they may act as biochemical units in synaptic transmission is also discussed.2  相似文献   

11.
甘思德  范明 《动物学报》1995,41(2):185-189
将夹伤的大鼠坐骨神经分离成单根纤维,在光镜、扫描和透射电镜下观察伤后98天内郎氏结的构筑变化。发现损伤使细胞器的轴浆转运阻断,积累的退变细胞器使结区的轴突外凸,郎氏结构构筑变形,髓鞘板层失序,轴膜崩解,积累的细胞器逸出,并看到仅残存的郎氏结近心端构筑、由近心端的母体神经和远心端的再生神经共同构筑的新生郎氏结,以及新生郎氏结构的发育过程等特征性图象。再生轴突中转运的微管等细胞器和施旺细胞中富含的线粒  相似文献   

12.
The pattern of synthesis of rapidly-labelled RNA of hen sciatic nerve was studied during Wallerian degeneration. At 2,4,8, 16 and 30 days of degeneration the proximal and distal stumps of the severed nerve as well as the intact contralateral sciatic nerve (functional control) were excised and incubated with either [5-3H]uridine or [2-14C]uridine for 0.5 h. The electrophoretic pattern of RNA from the normal adult sciatic nerve showed that most of the radioactivity was incorporated into RNA species migrating between the 18 S and 4 S components of the bulk RNA. The synthesis of RNA was sensitive to actinomycin-D, an indication that it was directed by a DNA template. The electrophoretic patterns of the rapidly-labelled RNA in the proximal and distal nerve stumps demonstrated a change following nerve section. After 2–4 days of Wallerian degeneration the degenerating distal nerves incorporated more radioactivity in the 4 S region than the corresponding controls, but at 8 and 16-days after degeneration relatively more label appeared in higher molecular weight RNA species. In the intact sciatic nerve of the operated hens progressively more radioactivity was detected in the 4 S region with increasing time after the contralateral nerve section. At each stage of Wallerian degeneration the specific radioactivities of RNA in the control nerves from experimental hens were higher than those of the normal adult sciatic nerve. These results indicated a change of RNA metabolism in increased functional activity and during Wallerian degeneration.  相似文献   

13.
Abstract— The presence of an axonal flow of proteins has been investigated in the optic nerve and lobe of Octopus vulgaris up to 5 days after the intraocular injection of [3H]leucine. In each of these regions and in the posterior half of the eye the content of radioactivity has been determined in the TCA-soluble fraction and in the saline-soluble and insoluble protein fractions.
After subtraction of the values of the control side, the concentration of radioactive proteins in the optic nerve and lobe of the injected side was found to increase according to a triphasic pattern. An initial phase of fast increase was followed by a period of essentially steady values and, eventually, by a second phase of less rapid but more prolonged increment. In both regions the per cent of radioactive soluble proteins increased after the completion of the first phase.  相似文献   

14.
AXONAL TRANSPORT OF S-100 PROTEIN IN MAMMALIAN NERVE FIBRES   总被引:2,自引:2,他引:0  
Abstract— The brain-specific S-100 protein is a neuronal as well as a glial protein. Neuronal S-100 is a migratory protein from soma to terminal of the hypoglossal, vagus and glossopharyngeal nerves of the rabbit (axonal transport of S-100 protein). There is a distinctive rate of flow for S-100 in the somatic and parasympathetic efferent fibres of such cranial nerves.  相似文献   

15.
LIPID AND PROTEIN CHANGES IN SCIATIC NERVE DURING WALLERIAN DEGENERATION   总被引:5,自引:12,他引:5  
Lipid and protein changes have been measured and correlated during early Wallerian degeneration in the same rat sciatic nerve. The major structural glycoprotein disappears at a steady rate and little remains after 8 days. There is a concomitant appearance of a protein with the same molecular size as basic protein B2 and which is probably formed from the glycoprotein. Basic protein (B1) is slowly lost, but Wolfgram protein tends to increase possibly because of glial cell proliferation. Cholesterol ester has appeared 3 days after sectioning, while cholesterol and probably cerebroside are reduced. Triglyceride levels show considerable variation, but biphasic increases tended to occur at 3-4 and 10-14 days. Loss of phospholipids is a later event. The changes in lipid and protein are discussed in relation to the stability of the peripheral nerve myelin membrane.  相似文献   

16.
—The cerebro-visceral connective of Anodonta cygnea has been shown to provide a convenient system for experiments on fast axonal transport. The transport mechanism is directional, independent of the cell bodies, inhibited by cyanide, dinitrophenol and colchicine but is resistant to anoxia. Although the rate of transport increases with temperature above 15°C it is more or less temperature-independent from 4 to 15°C, i.e. over the normal temperature range of this pond-dwelling mollusc.  相似文献   

17.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

18.
Wallerian degeneration was produced in guinea pig sciatic nerves by a crush injury. At intervals of 2, 12, 24, 36, 48, 72, and 96 hours after the crush, the nerves were fixed in osmium tetroxide, and blocks from the distal, degenerating segment identified topographically prior to embedding in Araldite or Epon. Phase and electron microscopic study of serial cross- and longitudinal sections reveals a striking, localized accumulation of axonal mitochondria which precedes or accompanies the swelling and fragmentation previously reported by others. These focal accumulations of mitochondria are transient and are most frequently observed in the paranodal axoplasm of large myelinated fibers 24 to 36 hours after crush injury, but are also occasionally identified in small myelinated fibers and unmyelinated axons. Migration and proliferation of axonal mitochondria are considered as possible explanations of these observations.  相似文献   

19.
Both rapid (415 mm/day) and slow (24 mm/day) rates of axonal transport of proteins were found in sensory fibres of rabbit vagus nerve after injection of [3H]leucine into the nodose ganglion in vivo. The slow phase of transport was dependent on contact between the cell bodies and the nerve trunk, and did not continue under in vivro conditions. The results suggest some difference between the mechanisms of fast and slow transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号