首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
One of the hallmarks of the latent phase of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.  相似文献   

4.
Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV, also designated human herpesvirus 8) can establish a latent infection in the infected host. During latency a small number of genes are expressed. One of those genes encodes latency-associated nuclear antigen (LANA), which is constitutively expressed in cells during latent as well as lytic infection. LANA has previously been shown to be important for the establishment of latent episome maintenance through tethering of the viral genome to the host chromosomes. Under specific conditions, KSHV can undergo lytic replication, with the production of viral progeny. The immediate-early Rta, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching from viral latent replication to lytic replication. Overexpression of Rta from a heterologous promoter is sufficient for driving KSHV lytic replication and the production of viral progeny. In the present study, we show that LANA down-modulates Rta's promoter activity in transient reporter assays, thus repressing Rta-mediated transactivation. This results in a decrease in the production of KSHV progeny virions. We also found that LANA interacts physically with Rta both in vivo and in vitro. Taken together, our results demonstrate that LANA can inhibit viral lytic replication by inhibiting expression as well as antagonizing the function of Rta. This suggests that LANA may play a critical role in maintaining latency by controlling the switch between viral latency and lytic replication.  相似文献   

5.
6.
Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus   总被引:12,自引:0,他引:12  
Kaposi sarcoma (KS)-associated herpesvirus (KSHV) is the most recently discovered human oncogenic herpesvirus. The virus is associated with KS lesions and other human malignancies, including pleural effusion lymphomas and multicentric castleman's disease. The sequence of the viral genome demonstrated that it belongs to the gammaherpesvirus family similar to the Epstein-Barr virus, the only other known human herpesvirus associated with human cancers. Molecular studies have identified a number of viral genes involved in regulation of cell proliferation, gene regulation, chromatin remodeling and apoptosis. KSHV transforms human endothelial cells in vitro with low efficiency and expresses a repertoire of latent genes involved in the establishment of latency. One of these latent proteins, the latency-associated nuclear antigen (LANA) is required for episomal maintenance and tethers the viral genome to the host chromatin. LANA has now been shown to be a multifunctional protein involved in numerous cellular functions including binding to the retinoblastoma protein and p53, regulating cell proliferation and apoptosis.  相似文献   

7.
8.
Verma SC  Robertson ES 《Journal of virology》2003,77(23):12494-12506
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), a human oncogenic gamma-2-herpesvirus, transforms human endothelial cells and establishes latent infection at a low efficiency in vitro. During latent infection, only a limited number of genes are expressed, and the circularized viral genome is maintained as a multicopy episome. Latency-associated nuclear antigen (LANA), exclusively expressed during latency, has been shown to have a multifunctional role in KS pathogenesis. LANA tethers the viral episome to the host chromosome, thus ensuring efficient persistence of the viral genome during successive rounds of cell division. Besides episome maintenance, LANA modulates the expression of genes of various cellular and viral pathways, including those of retinoblastoma protein and p53. Herpesvirus saimiri (HVS), another gamma-2-herpesvirus, primarily infects New World primates. Orf73, encoding the nuclear antigen of HVS, is the positional homolog of the LANA gene, and the ORF73 protein has some sequence homology to KSHV LANA. However, the function of ORF73 of HVS has not been thoroughly investigated. In this report, we show that HVS ORF73 may be important for episome persistence and colocalizes with the HVS genomic DNA on metaphase chromosomes. Furthermore, HVS terminal repeats (TRs) contain a cis-acting sequence similar to that in KSHV TRs, suggesting that the LANA binding sequence is conserved between these two viruses. This cis-acting element is sufficient to bind HVS ORF73 from strains C488 and A11, and plasmids containing the HVS C488 TR element are maintained and replicate in HVS C488 ORF73-expressing cells.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号