共查询到20条相似文献,搜索用时 15 毫秒
1.
Tina Kirchner Paul Georg Furtmüller Jürgen Arnhold 《Archives of biochemistry and biophysics》2010,495(1):21-664
The heme-containing enzyme myeloperoxidase (MPO) accumulates at inflammatory sites and is able to catalyse one- and two-electron oxidation reactions. Here it is shown that (-)-epicatechin, which is known to have numerous beneficial health effects, in low micromolar concentration enhances the degradation of monochlorodimedon (MCD) or the chlorination of taurine in a concentration-dependent bell-shaped manner whereas at higher concentrations it sufficiently suppresses the release of hypochlorous acid. Presented reaction mechanisms demonstrate the efficiency of micromolar concentrations of the flavan-3-ol in overcoming the accumulation of compound II that does not participate in the chlorination cycle. In case of MCD the mechanism is more complicated since it also acts as peroxidase substrate with very different reactivity towards compound I (3 × 105 M−1 s−1) and compound II (8.8 M−1 s−1) at pH 7. By affecting the chlorinating activity of myeloperoxidase (-)-epicatechin may participate in regulation of immune responses at inflammatory sites. 相似文献
2.
Santos AP Marinho DA Costa AM Izquierdo M Marques MC 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(6):1708-1716
The purpose of this study was to compare the effects of an 8-week training period of resistance training alone (GR), or combined resistance and endurance training (GCOM), followed by 12 weeks of detraining (DT) on body composition, explosive strength, and ·VO?max adaptations in a large sample of adolescent school boys. Forty-two healthy boys recruited from a Portuguese public high school (age: 13.3 ± 1.04 years) were assigned to 2 experimental groups to train twice a week for 8 weeks: GR (n = 15), GCOM (n = 15), and a control group (GC: n = 12; no training program). Significant training-induced differences were observed in 1- and 3-kg medicine ball throw gains (GR: +10.3 and +9.8%, respectively; GCOM: +14.4 and +7%, respectively), whereas no significant changes were observed after a DT period in both the experimental groups. Significant training-induced gains in the height and length of the countermovement (vertical-and-horizontal) jumps were observed in both the experimental groups. No differences were perceived after a DT period in lower limb power. Time at 20 m decreased significantly for both intervention programs (GR: -11.5% and GCOM: -12.4%, <0.00), but either GR or GCOM groups kept the running speed after a DT period of 12 weeks. After training, the ·VO?max increased only significantly for GCOM (4.6%, p = 0.01). A significant loss was observed after a DT period in GR but not in GCOM. Performing resistance and endurance training in the same workout does not impair strength development in young school boys. As expected, strength training by itself does not improve aerobic capacity. Our results also suggest that training program effects even persist at the end of the DT period. 相似文献
3.
G Benzi P Panceri M de Bernardi R Villa E Arcelli L D'Angelo E Arrigoni F Bertè 《Journal of applied physiology》1975,38(4):565-569
Some mitochondrial enzymatic activities (succinate dehydrogenase, NADH cytochrome reductase, cytochrome oxidase) were studied in the gastrocnemius and soleus muscle of the rat. The modifications of the enzyme activity, induced by endurance training, were found to be functions of 1) daily work load and 2) total training time. The treatment with an effective dose of vasodilating substances (papaverine, nicergoline, dipyridamole, and bamethan) showed that 1) nicergoline, bamethan, and dipyridamole were differently able to shorten the time of appearance of the increase in the enzymatic activities; 2) however, long-term treatments with these drugs did not prove able to modify the plateau level of the enzymatic activity increase, for a given amount of endurance training; 3) the pharmacodynamic effect on enzymatic activities was in no way related to the vasodilating effect of these drugs, since the effect was not observed with papaverine. The transition from a given level of endurance training to a lower one led to a proportional decrease of the mitochondrial enzymatic activities, thus pointing out the relation between amount of training and enzymatic activity. The drugs studied were unable to modify the decrease of enzymatic activity induced by lower work load. 相似文献
4.
5.
Dietary (-)-epicatechin is known to improve bioactivity of (*)NO in arterial endothelium of humans, but the mode of action is unclear. We used the fluorophore 4,5-diaminofluorescein diacetate to visualize the (*)NO level in living human umbilical vein endothelial cells (HUVEC). Untreated cells showed only a weak signal, whereas pretreatment with (-)-epicatechin (10 microM) or apocynin (100 microM) elevated the (*)NO level. The effects were more pronounced when the cells were treated with angiotensin II with or without preloading of the cells with (*)NO via PAPA-NONOate. While (-)-epicatechin scavenged O2(*-), its O-methylated metabolites prevented O2(*-) generation through inhibition of endothelial NADPH oxidase activity, even more strongly than apocynin. From the effect of 3,5-dinitrocatechol, an inhibitor of catechol-O-methyltransferase (COMT), on HUVEC it is concluded that (-)-epicatechin serves as 'prodrug' for conversion to apocynin-like NADPH oxidase inhibitors. These data indicate an (*)NO-preserving effect of (-)-epicatechin via suppression of O2(*-)-mediated loss of (*)NO. 相似文献
6.
Ishigaki T Koyama K Tsujita J Tanaka N Hori S Oku Y 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2005,24(6):573-578
A decrease in testosterone levels and an increase in cortisol levels are observed in male athletes with the overtraining syndrome (OTS). Cortisol causes blood leptin levels to rise and testosterone has an inverse relationship with blood leptin levels. Therefore, we hypothesized that the hormonal changes as a result of OTS induce an increase in leptin. To test this hypothesis, we examined the relationship among changes in leptin, testosterone and cortisol in thirteen male collegiate distance runners (aged 20.3+/-1.1 years) before and after an 8-day strenuous training camp. Runners ran 284.1+/-48.2 km during the training camp. Body fat percentages and plasma glucose concentrations decreased significantly after the training. Non-ester fatty acids and total cholesterol concentrations in blood were unchanged. Serum cortisol concentrations showed a significant increase after the training camp (from 11.82+/-2.00 microg/dl to 16.78+/-3.99 microg/dl), and serum testosterone decreased significantly (from 408.0+/-127.6 ng/dl to 265.2+/-97.6 ng/dl). The ratio of testosterone to cortisol (TCR) dropped by 50% after training (from 35.62+/-13.69 to 16.94+/-8.47). These results suggest that the subjects reached a state of the OTS. Contrary to our hypothesis, plasma leptin was not significantly changed (from 1.34+/-0.29 ng/ml to 1.49+/-0.18 ng/ml). Delta Plasma leptin was not significantly correlated with delta serum cortisol, delta TCR or delta fat percentage. However, delta serum testosterone was positively correlated with delta plasma leptin (r=596, p<0.05). Plasma leptin concentrations might modulate the secretion of testosterone in overtraining conditions. In conclusion, the change in blood leptin level is independent of the changes in cortisol, TCR and fat percentage in highly trained male athletes in the state of the OTS. 相似文献
7.
Carter SL Rennie C Tarnopolsky MA 《American journal of physiology. Endocrinology and metabolism》2001,280(6):E898-E907
We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training. 相似文献
8.
Specificity of physiological adaptation to endurance training in distance runners and competitive walkers 总被引:1,自引:0,他引:1
T Yoshida M Udo M Chida M Ichioka K Makiguchi T Yamaguchi 《European journal of applied physiology and occupational physiology》1990,61(3-4):197-201
The present study was designed to evaluate the specificity of physiological adaptation to extra endurance training in five female competitive walkers and six female distance runners. The mean velocity (v) during training, corresponding to 4 mM blood lactate [onset of blood lactate accumulation (OBLA)] during treadmill incremental exercise (training v was 2.86 m.s-1, SD 0.21 in walkers and 4.02 m.s-1, SD 0.11 in runners) was added to their normal training programme and was performed for 20 min, 6 days a week for 8 weeks, and was called extra training. An additional six female distance runners performed only their normal training programme every day for about 120 min at an exercise intensity equivalent to their lactate threshold (LT) (i.e. a running v of about 3.33 m.s-1). After the extra training, there were statistically significant increases in blood lactate variables (i.e. oxygen uptake (VO2) at LT, v at LT, VO2 at OBLA, v at OBLA; P less than 0.05), and running v for 3,000 m (P less than 0.01) in the running training group. In the walking training group, there were significant increases in blood lactate variables (i.e., v at LT, v at OBLA; P less than 0.05), and walking economy. In contrast, there were no significant changes in lactate variables, running v and economy in the group of runners which carried out only the normal training programme. It is suggested that the changes in blood lactate variables such as LT and OBLA played a role in improving v of both the distance runners and the competitive walkers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Ramirez-Sanchez I Maya L Ceballos G Villarreal F 《American journal of physiology. Cell physiology》2011,300(4):C880-C887
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon. 相似文献
10.
Kelvin J.A. Davies Lester Packer George A. Brooks 《Archives of biochemistry and biophysics》1981,209(2):539-554
The experimental intervention of exercise training has been used to study mitochondrial biosynthesis, and the physiologic integration of subcellular, cellular, and whole-animal energetics. Gross mitochondrial composition was unchanged in rat muscle by a 10-week program of endurance treadmill running. The mitochondrial concentration of iron-sulfur clusters, cytochromes, flavoprotein, dehydrogenases, oxidases, and membrane protein and lipid, as well as the ratios of each component to the others, maintained constant proportions. The mitochondrial content of muscle, however, increased by approximately 100% as did absolute tissue oxidative capacity. The soluble portions of mitochondria maintained a constant total protein content and mass, relative to the membrane fraction, despite adaptive changes in the specific activities of some citric acid-cycle enzymes. Mitochondria from endurance-trained muscles generated normal transmembrane potentials, ADP/O ratios, and respiratory control ratios. Muscle oxidase activity was highly correlated (r = 0.92) with endurance capacity, which increased 403%. Whole-animal maximal O2 consumption (), however, increased only 14% and was a relatively poor predictor of endurance. Thus, mitochondrial factors, rather than , must play an important role in dictating the limits of endurance activity. Conversely, was strongly related to the maximal intensity of work which could be attained aerobically (r = 0.82). Comparison of O2 consumption at the mitochondrial, muscle, and whole-animal levels revealed that maximal muscle oxidase activity was not an absolute limitation to : It is concluded that other factors intervene to control the percentage of muscle O2 consumption capacity which may be utilized during exercise. 相似文献
11.
Summary The soleus, rectus femoris and gastrocnemius muscles of young rats were studied after 3, 6 and 12 weeks of treadmill training. The muscle fibers were characterized histochemically by their succinate dehydrogenase (SDH) and myofibrillar ATPase activity, and morphometrically by their cross-sectional areas, which were corrected for different body weights of control and trained animals.After 12 weeks of training the mean area of fibers in the muscles studied was not significantly different from the controls, as expected. In the soleus muscle the percentage of the fast-twitch fibers was decreased as a result of their transformation into slow-twitch fibers. Trained soleus muscles were the only muscles showing pathologically altered fibers, suggesting overload. The percentages of fiber types and their areas exhibited changes specific for the muscles and muscle regions studied.From these results it is concluded that the adaptation follows the sequence proportional adaptation of morphometrical parameters, disproportional adaptation of the areas of fiber types, and disproportional adaptation of the percentages and/or the areas of the fiber types. It is shown by comparison with the literature that this sequence may be generalized to a sequence of increasing expense necessary for the adaptation to increasing stimuli, and that the most decisive factors for adaptation are work load, frequency of exercise, period of training, and the age of the subject at the initiation of the training. 相似文献
12.
F Marcello Iaia Ylva Hellsten Jens Jung Nielsen Maria Fernstr?m Kent Sahlin Jens Bangsbo 《Journal of applied physiology》2009,106(1):73-80
We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min of rest (5.7 +/- 0.1 km/wk) with additional 9.9 +/- 0.3 km/wk at low running speed, whereas Con continued the endurance training. After the IT period, oxygen uptake was 6.6, 7.6, 5.7, and 6.4% lower (P < 0.05) at running speeds of 11, 13, 14.5, and 16 km/h, respectively, in SET, whereas remained the same in Con. No changes in blood lactate during submaximal running were observed. After the IT period, the protein expression of skeletal muscle UCP3 tended to be higher in SET (34 +/- 6 vs. 47 +/- 7 arbitrary units; P = 0.06). Activity of muscle citrate synthase and 3-hydroxyacyl-CoA dehydrogenase, as well as maximal oxygen uptake and 10-km performance time, remained unaltered in both groups. In SET, the capillary-to-fiber ratio was the same before and after the IT period. The present study showed that speed endurance training reduces energy expenditure during submaximal exercise, which is not mediated by lowered mitochondrial UCP3 expression. Furthermore, speed endurance training can maintain muscle oxidative capacity, capillarization, and endurance performance in already trained individuals despite significant reduction in the amount of training. 相似文献
13.
14.
15.
16.
Decreased exercise blood lactate concentrations after respiratory endurance training in humans 总被引:9,自引:0,他引:9
Spengler CM Roos M Laube SM Boutellier U 《European journal of applied physiology and occupational physiology》1999,79(4):299-305
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training. 相似文献
17.
In the experiments involving incubation of the liver, brain cortex, muscle and adipose tissues homogenates with [3-14C] tryptophan for an hour 43.2-89.3% of the label was found in proteins, 7.2-47.2%--in lipids, 2.6-9.4%--in CO2. Following incubation of the above-mentioned tissue homogenates with [2-14C] alanine, proteins, lipids and CO2 contain 28.8-49.3%; 22.6-31.9% and 21.6-49.3% of radioactive label, respectively. Radioactivity of lipids synthesized by the homogenates of the investigated tissues from [3-14C] tryptophan and [2-14C] alanine is 23.5-63.5 and 21.1-56.0%, respectively, the radioactivity of CO2 being 1.4-5.1 and 9.3-11.8% of the above-mentioned compounds synthesized from [1-14C] acetate. The results obtained testify to the considerable contribution of [3-14C] tryptophan and [2-14C] alanine to protein synthesis as well as to their involvement in the substrate supply of lipogenesis and energetic processes in various organs and tissues of cattle. 相似文献
18.
Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats. 总被引:1,自引:0,他引:1
P D Neufer M H Shinebarger G L Dohm 《Canadian journal of physiology and pharmacology》1992,70(9):1286-1290
The aim of the present study was to examine the effects of treadmill exercise training and detraining on the skeletal muscle fiber type specific expression of the insulin-regulated glucose transporter protein (GLUT4) in rats. GLUT4 protein content was determined by Western and dot-blot analysis, using a polyclonal antibody raised against the carboxy-terminal peptide. Rats were sacrificed 24 h after the last training session. There were no significant changes in muscle GLUT4 after 1 day or 1 week of training. Six weeks of training increased GLUT4 protein content 1.4- to 1.7-fold (p < 0.05) over controls in the soleus and red vastus lateralis, whereas no significant change was evident in the white vastus lateralis muscle. GLUT4 protein content in both soleus and red vastus lateralis muscle returned to near control values after 7 days of detraining. Similar to GLUT4, citrate synthase activity showed no change after 1 day or 1 week of training, increased 1.8-fold over controls after 6 weeks of training, but returned to control values after 7 days detraining. These findings demonstrate that muscle GLUT4 protein is increased in rats with as little as 6 weeks of treadmill exercise training but that the adaptation is lost within 1 week of detraining. It is suggested that expression of the GLUT4 protein is coordinated with the well-documented adaptations in oxidative enzyme activity with endurance training and detraining. 相似文献
19.
P Schroeder H Zhang L O Klotz B Kalyanaraman H Sies 《Biochemical and biophysical research communications》2001,289(5):1334-1338
The flavanol (-)-epicatechin is known to protect against peroxynitrite-induced nitration and oxidation reactions. This study investigated the protection afforded by (-)-epicatechin against both these reaction types on one target molecule, the aminoacid tyrosine, in a hydrophilic milieu as well as with a lipophilic tyrosine derivative, N-t-BOC l-tyrosine tert-butyl ester (BTBE), bound to liposomes. The flavanol efficiently attenuated both tyrosine nitration and tyrosine dimerization (which is based on an initial oxidation reaction) and was active in the hydrophilic and hydrophobic systems at similar IC(50) values, approximately 0.02-0.05 mol (-)-epicatechin/mol peroxynitrite. Related procyanidin oligomers of different chain-length (dimer to octamer) were also tested for their protective properties, and exhibited protection that, on a monomer basis, was in the same order of magnitude as those for (-)-epicatechin. 相似文献
20.
Burgomaster KA Cermak NM Phillips SM Benton CR Bonen A Gibala MJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(5):R1970-R1976
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport. 相似文献