首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
To understand the complex inheritance of tolerance to salt stress in Medicago truncatula, quantitative trait loci (QTLs) analysis was performed using a set of recombinant inbred lines (RILs) derived from a cross between the tolerant line Jemalong A17 and susceptible line F83005.5. The RILs and parental lines were grown in individual pots filled with sterilized sand in a greenhouse under 0 and 50 mM NaCl. Plants were harvested after a period of 60 days. Fourteen quantitative traits related to aerial and root growths were measured. Broad-sense heritability of measured traits ranged from 0.21 to 0.83 and from 0.05 to 0.62 in control and in salt-stressed conditions, respectively. Established correlations between measured traits are dependent on treatment effect. We identified and mapped 10 QTLs in control conditions and 19 in salt stress. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. The QTLs detected under control and under salt-stressed conditions almost did not share the same map locations suggesting that the loci that are not stable across treatments reflect adaptation to this constraint. The maximum of QTLs was observed on the chromosome 8. The usefulness of these QTLs, identified in greenhouse conditions, for marker-assisted selection should therefore be evaluated under field conditions, and validated in other genetic backgrounds.  相似文献   

3.
Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.  相似文献   

4.
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs.  相似文献   

5.
6.
You A  Lu X  Jin H  Ren X  Liu K  Yang G  Yang H  Zhu L  He G 《Genetics》2006,172(2):1287-1300
This study was conducted to determine whether quantitative trait loci (QTL) controlling traits of agronomic importance detected in recombinant inbred lines (RILs) are also expressed in testcross (TC) hybrids of rice. A genetic map was constructed using an RIL population derived from a cross between B5 and Minghui 63, a parent of the most widely grown hybrid rice cultivar in China. Four TC hybrid populations were produced by crossing the RILs with three maintaining lines for the widely used cytoplasmic male-sterile (CMS) lines and the genic male-sterile line Peiai64s. The mean values of the RILs for the seven traits investigated were significantly correlated to those of the F1 hybrids in the four TC populations. Twenty-seven main-effect QTL were identified in the RILs. Of these, the QTL that had the strongest effect on each of the seven traits in the RILs was detected in two or more of the TC populations, and six other QTL were detected in one TC population. Epistatic analysis revealed that the effect of epistatic QTL was relatively weak and cross combination specific. Searching publicly available QTL data in rice revealed the positional convergence of the QTL with the strongest effect in a wide range of populations and under different environments. Since the main-effect QTL is expressed across different testers, and in different genetic backgrounds and environments, it is a valuable target for gene manipulation and for further application in rice breeding. When a restorer line that expresses main-effect QTL is bred, it could be used in a number of cross combinations.  相似文献   

7.
In this study, we analyzed the behavior of several neglected, ancestral, and domesticated wheat genotypes, including Ae. triuncialis, Ae. neglecta, Ae. caudata, Ae. umbellulata, Ae. tauschii, Ae. speltoides, T. boeoticum, T. urartu, T. durum, and T. aestivum under control and salinity stress to assess the mechanisms involved in salinity tolerance. Physiological and biochemical traits including root/shoot biomasses, root/shoot ion concentrations, activity of antioxidant enzymes APX, SOD, and GXP, and the relative expression of TaHKT1;5, TaSOS1, APX, GXP, and MnSOD genes were measured. Analysis of variance (ANOVA) revealed significant effects of the salinity treatments and genotypes for all evaluated traits. Salinity stress (350 mM NaCl) significantly decreased root/shoot biomasses, K+ concentration in root/shoot, and root/shoot K+/Na+ ratios. In contrast, salinity stress significantly increased Na+ concentration in root and shoot, activity of antioxidant enzymes (APX, SOD, and GPX) and relative expression of salt tolerance-related genes (TaHKT1;5, TaSOS1, APX, GPX, and MnSOD). Based on heat map and principal component analysis, the relationships among physiological traits and relative expression of salt-responsive genes were investigated. Remarkably, we observed a significant association between the relative expression of TaHKT1;5 with root K+ concentration and K+/Na+ ratio and with TaSOS1. Taken together, our study revealed that two neglected (Ae. triuncialis) and ancestral (Ae. tauschii) wheat genotypes responded better to salinity stress than other genotypes. Further molecular tasks are therefore essential to specify the pathways linked with salinity tolerance in these genotypes.  相似文献   

8.
Selenium is essential for many organisms, but is toxic at higher levels. To investigate the genetic basis of selenate tolerance in Arabidopsis thaliana, quantitative trait loci (QTL) associated with selenate tolerance in accessions Landsberg erecta and Columbia were mapped using recombinant inbred lines (RILs). The selenate tolerance index (TI(D10) = root growth + 30 microm selenate/root growth control x 100%) was fourfold higher for parental line Col-4 (59%) than for parent Ler-0 (15%). Among the 96 F8 RILs, TI(D10) ranged from 11 to 75% (mean 37%). Using composite interval mapping, three QTL were found on chromosomes 1, 3 and 5, which together explained 24% of variation in TI(D10) and 32% of the phenotypic variation for the difference in root length +/- Se (RL(D10)). Highly significant epistatic interactions between the QTL and markers on chromosome 2 explained additional variation for both traits. Potential candidate genes for Se tolerance in each of the QTL regions are discussed. These results offer insight into the genetic basis of selenate tolerance, and may be useful for identification of selenate-tolerance genes.  相似文献   

9.
10.
该研究以‘山农0431×鲁麦21’RIL群体及其父母本为材料,用20%PEG-6000溶液和100 mmol·L-1 NaCl溶液分别模拟干旱和盐环境,对12个小麦萌发期抗旱耐盐相关性状进行测定,结合已构建的分子标记遗传图谱对小麦萌发期抗旱、耐盐的相关性状进行QTL分析,为小麦抗旱、耐盐基因的克隆和分子标记辅助选择提供参考。结果表明:(1)正常、干旱和盐胁迫3种处理下共检测到143个QTL。检测到相对高频QTL(RHF-QTL)29个,平均贡献率范围为4.39%~13.28%,贡献率在10%以上的主效RHF-QTL有10个。(2)检测到胁迫下特异表达的RHF-QTL共17个,正常处理下特异表达的RHF-QTL为8个,稳定表达的RHF-QTL为4个。(3)QTL分析结果表明,7个RHF-QTL形成了3个QTL簇,且分布在2D、4D和5B等3条染色体上,其中:QC1位于2D染色体的wPt-6847~D-1172783区间,包括3个QTL(QRl-2D.2、QSdw-2D.3、QTdw-2D);QC2位于4D染色体短臂的D-2245724~D-1108531区间,包括2个QTL(QSl-4D、QShl-4D);QC3位于5B染色体的D-982263~S-1083095区间,包括2个QTL(QSl-5B.2、QTdw-5B.1)。  相似文献   

11.
以药用蒲公英(Taraxacum officinale)为试材,研究不同浓度盐胁迫对其生长特性、有效成分积累和离子吸收分配的影响。结果表明,低盐胁迫(0.1%NaCl)对药用蒲公英生长和菊苣酸含量无显著影响,叶中Na+含量与对照无显著差异,K+含量及K+/Na+显著升高;高盐胁迫(≥0.2%NaCl)下其生长受到显著抑制,菊苣酸含量显著降低,类囊体膜结构随着盐胁迫加剧趋于紊乱,光合能力减弱,叶片Na+含量显著上升,而K+、Ca2+和Mg2+含量下降,K+/Na+、Ca2+/Na+和Mg2+/Na+显著降低。离子运输选择性系数(SCa,Na、SMg,Na、SK,Na)随着盐胁迫加剧呈先升后降趋势。相关性分析表明,盐胁迫下...  相似文献   

12.
13.
14.
15.
The present study was aimed at mapping of Quantitative Trait Loci (QTL) for various traits influencing the performance of maize genotypes under drought stress conditions in India. A set of 210 Recombinant Inbred Lines (RILs) developed at CIMMYT (Mexico) was analyzed in drought trials undertaken at Karimnagar (2002-03) and Hyderabad (2003-04). Analyses of the RIL datasets using Composite Interval Mapping (CIM) models led to the detection of 52 QTLs, including 22 QTLs under the control conditions and 30 QTLs under drought stress conditions at Karimnagar, and 14 QTLs influencing various characters under drought stress conditions at Hyderabad. A significant digenic epistatic QTL effect, other than the main effect QTLs, was detected for kernel number per ear under drought stress conditions. A comparison of the QTL information obtained from independent analyses of the Karimnagar and Hyderabad datasets revealed colocalization of QTLs on chromosomes 1, 2, 8 and 10 in the RILs influencing specific characters under drought stress conditions. Comparison of the QTL information with that reported from previous analyses of the same set of RILs at Mexico, Kenya and Zimbabwe revealed some ‘consensus QTLs’, which could be of significance in molecular marker-assisted breeding for drought tolerance in maize, besides functional genomics.  相似文献   

16.
水稻红莲型CMS育性恢复QTL分析   总被引:4,自引:0,他引:4  
红莲型CMS是在我国杂交水稻生产中被广泛利用的雄性不育细胞质之一。为了同时定位红莲型CMS育性恢复主效和微效QTL,利用红莲型CMS不育系粤泰A(YTA)与“Lemont/特青”RIL群体测交,结合1张含有198个DNA分子标记的高密度遗传图谱,对测交F1群体的小穗育性和花粉育性进行复合区间作图。在对YTA的育性恢复性方面,该。RIL群体的2个亲本之间具有明显差异,特青的恢复性较强,其测交F1的小穗育性和花粉育性分别为72%和51%;而Lemont测交F1的小穗育性和花粉育性分别为32%和9%。复合区间作图定位到4个育性恢复QTL,分别位于水稻第1、2和10号染色体上,单个QTL的贡献率在5%~24%之间。其中,除1个QTL的增效基因来源于Lemont外,其余3个QTL的增效基因均来源于特青。效应最大的QTL为qRF-10-1,该QTL位于10号染色体RM258-C16标记区间,对小穗育性表型变异的贡献率为24%,对花粉育性的贡献率为17%,且该QTL被检测到的LOD值显著较高,因此是1个主效QTL,其增效基因来源于特青。除了主效QTLqRF-10-1外,其它3个QTL对性状的贡献率均在10%以下(5%~8%)。由此表明,该RIL群体对红莲型CMS的育性恢复由1个主效QTL控制,并受其它几个微效QTL的影响。该QTL定位结果与小穗育性在测交F1群体中呈连续的双峰分布的结果相一致。与主效QTL qRF-10-1紧密连锁的SSR标记为RM258,该主效QTL可作为分子标记辅助育种的操作目标之一,用于杂交稻分子育种中培育红莲型CMS的强恢复系。  相似文献   

17.
Southern leaf blight (SLB) caused by the fungus Cochliobolus heterostrophus (Drechs.) Drechs. is a major foliar disease of maize worldwide. Our objectives were to identify quantitative trait loci (QTL) for resistance to SLB and flowering traits in recombinant inbred line (RIL) population derived from the cross of inbred lines LM5 (resistant) and CM140 (susceptible). A set of 207 RILs were phenotyped for resistance to SLB at three time intervals for two consecutive years. Four putative QTL for SLB resistance were detected on chromosomes 3, 8 and 9 that accounted for 54% of the total phenotypic variation. Days to silking and anthesis–silking interval (ASI) QTL were located on chromosomes 6, 7 and 9. A comparison of the obtained results with the published SLB resistance QTL studies suggested that the detected bins 9.03/02 and 8.03/8.02 are the hot spots for SLB resistance whereas novel QTL were identified in bins 3.08 and 8.01/8.04. The linked markers are being utilized for marker‐assisted mobilization of QTL conferring resistance to SLB in elite maize backgrounds. Fine mapping of identified QTL will facilitate identification of candidate genes underlying SLB resistance.  相似文献   

18.
Flower and pod numbers per plant are important agronomic traits underlying soybean yield.So far quantitative trait loci (QTL) detected for flower and pod-related traits have mainly focused on the final stage,and might therefore have ignored genetic effects expressed during a specific developmental stage.Here,dynamic expressions of QTL for flower and pod numbers were identified using 152 recombinant inbred lines (RILs) and a linkage map of 306 markers.Wide genetic variation was found among RILs;17 unconditional and 18 conditional QTL were detected for the two traits at different developmental stages over two years.Some QTL were detected only at one stage and others across two or more stages,indicating that soybean flower and pod numbers development may be governed by time-dependent gene expression.Three main QTL (qfn-Chr18-2,qfn-Chr20-1,and qfn-Chr19) were detected for flower number,and two main QTL (qpn-Chr11 and qpn-Chr20) were detected for pod number.The phenotypic variation explained by them ranged from 6.1% to 34.7%.The markers linked to these QTL could be used in marker-assisted selection for increasing soybean flower and pod numbers,with the ultimate aim of increasing soybean yield.Comparison of the QTL regions for flower and pod numbers traits with the related genes reported previously showed that seven and four related genes were located in the QTL regions of qfn-Chr11 and qfn-Chr19,respectively.Tbese results provide a basis for fine mapping and cloning of flower and pod development-related genes.  相似文献   

19.
Karandashova IV  Elanskaia IV 《Genetika》2005,41(12):1589-1600
Exposure to high concentrations of environmental NaCl exerts two stress effects on living cells, increasing the osmotic pressure and the concentration of inorganic ions. Salt stress dramatically suppresses the photosynthetic activity in cells of phototrophic organisms, such as cyanobacteria. During salt adaptation, cyanobacterial cells accumulate osmoprotectors, export excessive Na+ with the help of Na+/H+ antiporters, and actively absorb K+ with the help of K+-transporting systems. These physiological processes are accompanied by induction or suppression of several genes involved in salt adaptation. The review considers the main mechanisms responsible for the resistance of cyanobacterial cells to salt and hyperosmotic stresses. Special emphasis is placed on recent achievements in studying the genetic control of salt resistance and regulation of gene expression during adaptation of cyanobacteria to salt and hyperosmotic stresses.  相似文献   

20.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号