首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Multiple mechanisms are implicated in the development of primary osteoarthritis (OA), in which genetic and epigenetic factors appear to interact with environmental factors and age to initiate the disease and stimulate its progression. Changes in expression of microRNAs (miRs) contribute to development of osteoarthritis. Numerous miRs are involved in cartilage development, homeostasis and degradation through targeting genes expressed in this tissue. An important regulator of gene expression in human cartilage is miR-140, which directly targets a gene coding aggrecanase ADAMTS-5, that cleaves aggrecan in cartilage. This miR is considered a biological marker for cartilage and its level significantly decreases in OA cartilage. On the other hand, increased expression of miR-146a in early OA inhibits two other cartilage-degrading enzymes: MMP13 and ADAMTS4, and may provide a useful tool in developing treatments for OA. The COL2A1 gene, encoding collagen type II, which is the most abundant structural protein of the cartilage, is silenced by miR-34a and activated by miR-675. Every year, new targets of cartilage miRs are validated experimentally and this opens new possibilities for new therapies that control joint destruction and stimulate cartilage repair. At the same time development of next-generation sequencing technologies allows to identify new miRs involved in cartilage biology.  相似文献   

3.
Osteoarthritis (OA) is the most common type of arthritis and no longer is considered as an absolute consequence of joint mechanical use (wear and tear); rather recent data demonstrate the pivotal role of inflammatory mediators in the development and progression of this disease. This multifactorial disease results from several environmental and inherited factors. Genetic cannot solely explain all the contribution share of inheritance and, this way, it is speculated that epigenetics can play a role, too. Moreover, environmental factors can induce local epigenetic changes. The epigenetic contribution to OA pathogenesis occurs at all of its levels, DNA methylation, histone modification, microRNA, and long noncoding RNA. In fact, during early phases of OA pathogenesis, environmental factors employ epigenetic mechanisms to provide a positive feedback for the OA-related pathogenic mechanisms and pathways with an ultimate outcome of a well-established clinical OA. These epigenetic changes stay during clinical disease and prevent the body natural healing and regenerative processes to work properly, resulting in an incurable disease condition. In this review article, we aimed to have an overview on the studies performed with regard to understanding the role of epigenetics in the etiopathogenesis of OA and highlighted the importance of such kind of regulatory mechanisms within this context.  相似文献   

4.
5.
Osteoarthritis (OA) is one of the most common age-related chronic disorders of articular cartilage, joints and bone tissue. Diagnosis of OA commonly depends on clinical and radiographic findings. However, changes in cartilage associated with the early stage of OA cannot be detected using radiographs, because significant cartilage degeneration must occur before radiographic findings show alterations of the appearance of cartilage. To identify new biomarkers of OA, we analysed gene expression profiles of synovium from 43 patients with OA, ten patients with rheumatoid arthritis (RA), and eight non-OA/non-RA patients using a novel cDNA microarray chip. We identified 21 genes with simultaneous significant differences in expression between OA and non-OA/non-RA groups and between OA and RA groups. Linear discriminant analysis showed that the three groups could be well separated using those 21 genes. Statistical analysis also revealed that several of the 21 genes were associated with disease progression and clinical presentation. The graphical modelling method indicated that some of the 21 genes are significantly associated with a particular clinical presentation, suggesting biological relationships among those genes. This is the first report of the use of cDNA microarray technology to create large-scale gene expression profiles differentially expressed in situ in OA synovium of the knee joint.  相似文献   

6.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.  相似文献   

7.
Histone modifications as a platform for cancer therapy   总被引:8,自引:0,他引:8  
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.  相似文献   

8.
The role of genetic mutations in the development of polycystic kidney disease (PKD), such as alterations in PKD1 and PKD2 genes in autosomal dominant PKD (ADPKD), is well understood. However, the significance of epigenetic mechanisms in the progression of PKD remains unclear and is increasingly being investigated. The term of epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. Epigenetic information can be inherited during mammalian cell division to sustain phenotype specifically and physiologically responsive gene expression in the progeny cells. A multitude of functional studies of epigenetic modifiers and systematic genome-wide mapping of epigenetic marks reveal the importance of epigenomic mechanisms, including DNA methylation, histone/chromatin modifications and non-coding RNAs, in PKD pathologies. Deregulated proliferation is a characteristic feature of cystic renal epithelial cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cyst formation and progression. Recent evidence suggests that alterations of DNA methylation and histone modifications on specific genes and the whole genome involved in cell cycle regulation and contribute to the pathogenesis of PKD. This review summarizes the recent advances of epigenetic mechanisms in PKD, which helps us to define the term of “PKD epigenetics” and group PKD epigenetic changes in three categories. In particularly, this review focuses on the interplay of epigenetic mechanisms with cell cycle regulation during normal cell cycle progression and cystic cell proliferation, and discusses the potential to detect and quantify DNA methylation from body fluids as diagnostic/prognostic biomarkers. Collectively, this review provides concepts and examples of epigenetics in cell cycle regulation to reveal a broad view of different aspects of epigenetics in biology and PKD, which may facilitate to identify possible novel therapeutic intervention points and to explore epigenetic biomarkers in PKD.  相似文献   

9.
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.  相似文献   

10.
Osteoarthritis (OA) is one of the most common age-related chronic disorders of articular cartilage, joints and bone tissue. Diagnosis of OA commonly depends on clinical and radiographic findings. However, changes in cartilage associated with the early stage of OA cannot be detected using radiographs, because significant cartilage degeneration must occur before radiographic findings show alterations of the appearance of cartilage. To identify new biomarkers of OA, we analysed gene expression profiles of synovium from 43 patients with OA, ten patients with rheumatoid arthritis (RA), and eight non-OA/non-RA patients using a novel cDNA microarray chip. We identified 21 genes with simultaneous significant differences in expression between OA and non-OA/non-RA groups and between OA and RA groups. Linear discriminant analysis showed that the three groups could be well separated using those 21 genes. Statistical analysis also revealed that several of the 21 genes were associated with disease progression and clinical presentation. The graphical modelling method indicated that some of the 21 genes are significantly associated with a particular clinical presentation, suggesting biological relationships among those genes. This is the first report of the use of cDNA microarray technology to create large-scale gene expression profiles differentially expressed in situ in OA synovium of the knee joint.  相似文献   

11.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond–Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

12.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond-Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

13.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

14.
Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.  相似文献   

15.
The fundamental role of epigenetic events in cancer   总被引:3,自引:0,他引:3  
  相似文献   

16.
Pan Z  Zhang J  Li Q  Li Y  Shi F  Xie Z  Liu H 《遗传学报》2012,39(3):111-123
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).  相似文献   

17.
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.  相似文献   

18.
19.
20.
Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age‐related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in ‘classical’ senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence‐associated beta‐galactosidase (SAβGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号