首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transitive responding in humans and non-human animals has attracted considerable attention because of its presumably inferential nature. In an attempt to replicate our earlier study with crows [Lazareva, O.F., Smirnova, A.A., Bagozkaja, M.S., Zorina, Z.A., Rayevsky, V.V., Wasserman, E.A., 2004. Transitive responding in hooded crows requires linearly ordered stimuli. J. Exp. Anal. Behav. 82, 1-19], we trained pigeons to discriminate overlapping pairs of colored squares (A+ B-, B+ C-, C+ D-, and D+ E-). For some birds, the colored squares, or primary stimuli, were followed by a circle of the same color (feedback stimuli) whose diameter decreased from A to E (Ordered Feedback group); these circles were made available to help order the stimuli along a physical dimension. For other birds, all of the feedback stimuli had the same diameter (Constant Feedback group). In later testing, novel choice pairs were presented, including the critical BD pair. The pigeons' reinforcement history with Stimuli B and D was controlled, so that the birds should not have chosen Stimulus B during the BD test. Unlike the crows, the pigeons selected Stimulus B over Stimulus D in both ordered and Constant Feedback groups, suggesting that the orderability of the post-choice feedback stimuli did not affect pigeons' transitive responding. Post hoc simulations showed that associative models [Wynne, C.D.L., 1995. Reinforcement accounts for transitive inference (TI) performance. Anim. Learn. Behav. 23, 207-217; Siemann, M., Delius, J.D., 1998. Algebraic learning and neural network models for transitive and non-transitive responding. Eur. J. Cogn. Psychol. 10, 307-334] failed to predict pigeons' responding in the BD test.  相似文献   

2.
We studied human nonverbal transitive inference in two paradigms: with choice stimuli orderable along a physical dimension and with non-orderable choice stimuli. We taught 96 participants to discriminate four overlapping pairs of choice stimuli: A+ B−, B+ C−, C+ D−, and D+ E−. Half of the participants were provided with post-choice visual feedback stimuli which were orderable by size; the other half were not provided with orderable feedback stimuli. In later testing, we presented novel choice pairs: BD, AC, AD, AE, BE, and CE. We found that transitive responding depended on task awareness for all participants. Additionally, participants given ordered feedback showed clearer task awareness and stronger transitive responding than did participants not given ordered feedback. Associative models ( [Wynne, 1995] and [Siemann and Delius, 1998]) failed to predict the increase in transitive responding with increasing awareness. These results suggest that ordered and non-ordered transitive inference tasks support different patterns of performance.  相似文献   

3.
The present rat experiment evaluated the validity of two formal accounts of configural learning in the framework of discrimination tasks involving the serial presentation of feature and target stimuli: Rescorla's (1973) modification of the Rescorla-Wagner model (1972) and the Pearce model (1987). The first, ambiguous feature task was of the form X-->A+, Y-->A-, X-->B-, Y-->B+, in which X and Y represent visual features, '-->' signifies a serial arrangement, A and B are auditory target stimuli, and '+' and '-' symbolise food-reinforcement and non-reinforcement, respectively. The second, non-ambiguous feature task was of the form: X-->A+, Y-->A-, X-->B+, Y-->B-. The former task was much more difficult to solve than was the latter task. The Rescorla model is able to account for the observed differences between the two tasks in learning rates and in the associative strength of feature X with more plausible parameter values than is the Pearce model. It is suggested that models acknowledging a role for both elemental and configural learning can better account for discrimination learning in discrimination tasks of the sort presented in this study than do models that exclusively allow for configural learning.  相似文献   

4.
We review recent experiments examining whether simple models of the allocation and persistence of operant behavior are applicable to attending. In one series of experiments, observing responses of pigeons were used as an analog of attending. Maintenance of observing is often attributed to the conditioned reinforcing effects of a food-correlated stimulus (i.e., S+), so these experiments also may inform our understanding of conditioned reinforcement. Rates and allocations of observing were governed by rates of food or S+ delivery in a manner consistent with the matching law. Resistance to change of observing was well described by behavioral momentum theory only when rates of primary reinforcement in the context were considered. Rate and value of S+ deliveries did not affect resistance to change. Thus, persistence of attending to stimuli appears to be governed by primary reinforcement rates in the training context rather than conditioned reinforcing effects of the stimuli. An additional implication of these findings is that conditioned "reinforcers" may affect response rates through some mechanism other than response-strengthening. In a second series of experiments, we examined the applicability of the matching law to the allocation of attending to the elements of compound stimuli in a divided-attention task. The generalized matching law described performance well, and sensitivity to relative reinforcement varied with sample duration. The bias and sensitivity terms of the generalized matching law may provide measures of stimulus-driven and goal-driven control of divided attention. Further application of theories of operant behavior to performance on attention tasks may provide insights into what is referred to variously as endogenous, top-down, or goal-directed control of attention.  相似文献   

5.
《Zoology (Jena, Germany)》2014,117(2):104-111
This study assessed visual discrimination abilities in bamboo sharks (Chiloscyllium griseum). In a visual discrimination task using two-dimensional (2D) geometric stimuli, sharks learned to distinguish between a square, being the positive (rewarded) stimulus, and several negative stimuli, such as two differently sized triangles, a circle, a rhomboid and a cross. Although the amount of sessions to reach the learning criterion and the average trial time needed to solve each new task did not vary significantly, the number of correct choices per session increased significantly with on-going experiments. The results indicate that the sharks did not simply remember the positive stimulus throughout the different training phases. Instead, individuals also seemed to learn each negative symbol and possibly had to “relearn” at least some aspects of the positive stimulus during each training phase. The sharks were able to distinguish between the 2D stimulus pairs at a learning rate corresponding to that found in teleosts. As expected, it took the sharks longer to learn a reversal task (with the positive stimulus now being the negative one) than to discriminate between the other stimulus pairs. Nevertheless, the present results suggest that bamboo sharks can learn visual discrimination tasks, succeed in a reversal task and probably retain (some) information about a previously learned task when progressing to a new one.  相似文献   

6.
We contrast two computational models of sequence learning. The associative learner posits that learning proceeds by strengthening existing association weights. Alternatively, recoding posits that learning creates new and more efficient representations of the learned sequences. Importantly, both models propose that humans act as optimal learners but capture different statistics of the stimuli in their internal model. Furthermore, these models make dissociable predictions as to how learning changes the neural representation of sequences. We tested these predictions by using fMRI to extract neural activity patterns from the dorsal visual processing stream during a sequence recall task. We observed that only the recoding account can explain the similarity of neural activity patterns, suggesting that participants recode the learned sequences using chunks. We show that associative learning can theoretically store only very limited number of overlapping sequences, such as common in ecological working memory tasks, and hence an efficient learner should recode initial sequence representations.  相似文献   

7.
Transitive inference has long been considered one of the hallmarks of human deductive reasoning. Recent reports of transitive-like behaviors in non-human animals have prompted a flourishing empirical and theoretical search for the mechanism(s) that may mediate this ability in non-humans. In this paper, I begin by describing the transitive inference tasks customarily used with non-human animals and then review the empirical findings. Transitive inference has been demonstrated in a wide variety of species, and the signature effects that usually accompany transitive inference in humans (the serial position effect and the symbolic distance effect) have also been found in non-humans. I then critically analyze the most prominent models of this ability in non-human animals. Some models are cognitive, proposing for instance that animals use the rules of formal logic or form mental representations of the premises to solve the task, others are based on associative mechanisms such as value transfer and reinforcement and non-reinforcement. Overall, I argue that the reinforcement-based models are in a much better empirical and theoretical position. Hence, transitive inference in non-human animals should be considered a property of reinforcement history rather than of inferential processes. I finalize by shedding some light on some promising lines of research.  相似文献   

8.
We investigated maze learning in dwarf goats (Capra hircus) and the impact of lateralisation on learning. Lateralisation refers to the collection of phenomena in which external stimuli are perceived and processed differentially on the two sides of the brain and/or certain behaviours are preferentially performed by one side of the body. We trained 29 dwarf goats in a Y-maze, directing them to the opposite alley from that chosen in a free pre-run. In total, 13 goats were trained to the left alley (L-goats) and 16 goats to the right alley (R-goats). Recall of the trained alley was tested three months later. We then analysed reversal learning across 10 reversals. During training, the direction of the alley had an impact on learning. The number of runs required to reach the learning criterion was significantly lower in the L- than the R-goats. The goats recalled the trained alley three months later, with no difference between the L- and the R-goats. During the reversal learning, the reversal only tended to impact learning performance, whereas the directions of the new and the initially trained alley did not. Goats did not adopt a general rule with which to master the maze (e.g., win-stay/lose-shift) across the 10 reversals. Our results indicate a right hemisphere bias in the processing of visuospatial cues in the maze during initial training; however, no such impact was detected during reversal learning.  相似文献   

9.
We measured local field potential (LFP) and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in the medial temporal lobes of monkeys and humans, respectively, as they performed the same conditional motor associative learning task. Parallel analyses were used to examine both data sets. Despite significantly faster learning in humans relative to monkeys, we found equivalent neural signals differentiating new versus highly familiar stimuli, first stimulus presentation, trial outcome, and learning strength in the entorhinal cortex and hippocampus of both species. Thus, the use of parallel behavioral tasks and analyses in monkeys and humans revealed conserved patterns of neural activity across the medial temporal lobe during an associative learning task.  相似文献   

10.
Synaptic strength is modified by the temporal coincidence of synaptic inputs without back-propagating action potentials (BPAPs) in CA1 pyramidal neurons. In order to clarify the interactive mechanisms of associative long-term potentiation (LTP) without BPAPs, local paired stimuli were applied to the dendrites using high-speed laser uncaging stimulation equipment. When the spatial distance between the paired stimuli was <10 micrometer, nonlinear amplification in excitatory postsynaptic potential summation was observed. In the time window from −20 to 20 ms, supralinear amplification was observed. Supralinear amplification was modulated by antagonist of voltage-gated Na+/Ca2+ channels and NMDA-type glutamate receptors. These results are closely related to the spatiotemporal-characteristics of associative LTP without BPAPs. This study proposes an essential aspect of dendritic information processing.  相似文献   

11.
A number of memory models have been proposed. These all have the basic structure that excitatory neurons are reciprocally connected by recurrent connections together with the connections with inhibitory neurons, which yields associative memory (i.e., pattern completion) and successive retrieval of memory. In most of the models, a simple mathematical model for a neuron in the form of a discrete map is adopted. It has not, however, been clarified whether behaviors like associative memory and successive retrieval of memory appear when a biologically plausible neuron model is used. In this paper, we propose a network model for associative memory and successive retrieval of memory based on Pinsky-Rinzel neurons. The state of pattern completion in associative memory can be observed with an appropriate balance of excitatory and inhibitory connection strengths. Increasing of the connection strength of inhibitory interneurons changes the state of memory retrieval from associative memory to successive retrieval of memory. We investigate this transition.  相似文献   

12.
The article presents empirical data on the possible use of transcranial Doppler sonography as a method for the identification of functional specialization of hemispheres. We investigated intrahemispheric differences in the increase in blood flow velocity indicators during the performance of cognitive tasks with verbal and nonverbal stimuli in 20 healthy right-handed participants and 20 right-handed patients with local unilateral vascular brain lesions. We observed interhemispheric and intrahemispheric differences in blood flow velocity indicators between arteries during the performance of cognitive tasks with different variants of verbal stimuli in all participants. It has been found that one of the hemispheres plays a dominant role in verbal and nonverbal stimulus processing.  相似文献   

13.
Learning allows animals to adaptively adjust their behaviour in response to variable but predictable environments. Stable aspects of the environment may result in evolved or developmental biases in the systems impacting learning, allowing for improved learning performance according to local ecological conditions. Guppies (Poecilia reticulata), like many animals, show striking colour preferences in foraging and mating contexts and guppy artificial selection experiments have found that the form and progress of evolved responses to coloured stimuli differ depending on stimulus colour. Blue colouration is thought to typically be a relatively unimportant food cue in guppies. This raises the possibility that learned foraging associations with blue objects are formed less readily than with other colours. Here, guppies were rewarded for foraging at green or blue objects in two experiments. Guppies readily foraged from these objects, but learning performance differed with rewarded object colour. With equal amounts of training, the preference for green objects became stronger than the preference for blue objects. These differences in performance were not attributable to differences in initial preferences or to foraging more on one colour during training. These findings suggest that associative pairings within a single sensory modality that do not have a historic relevancy can be more difficult for animals to learn even when there is no clear initial bias present.  相似文献   

14.
The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.  相似文献   

15.
Associative Training of Hermissenda   总被引:3,自引:2,他引:1       下载免费PDF全文
Reflex behavior of Hermissenda in response to visual and rotational stimuli is described. It is shown that repeated association of light with rotation modifies the subsequent responses of the animals to light. This modification does not occur after the same period of light or rotation alone. The effect of the associative training is strongly dependent on the amount of daily light with which the animals are maintained.  相似文献   

16.
Delayed comparison tasks are widely used in the study of working memory and perception in psychology and neuroscience. It has long been known, however, that decisions in these tasks are biased. When the two stimuli in a delayed comparison trial are small in magnitude, subjects tend to report that the first stimulus is larger than the second stimulus. In contrast, subjects tend to report that the second stimulus is larger than the first when the stimuli are relatively large. Here we study the computational principles underlying this bias, also known as the contraction bias. We propose that the contraction bias results from a Bayesian computation in which a noisy representation of a magnitude is combined with a-priori information about the distribution of magnitudes to optimize performance. We test our hypothesis on choice behavior in a visual delayed comparison experiment by studying the effect of (i) changing the prior distribution and (ii) changing the uncertainty in the memorized stimulus. We show that choice behavior in both manipulations is consistent with the performance of an observer who uses a Bayesian inference in order to improve performance. Moreover, our results suggest that the contraction bias arises during memory retrieval/decision making and not during memory encoding. These results support the notion that the contraction bias illusion can be understood as resulting from optimality considerations.  相似文献   

17.
Many studies have reported strength gains in older adults following high-intensity resistance training. However, the muscle contraction types examined have been primarily isometric (static) or concentric (CONC; shortening). Less is known about how eccentric (ECC) strength in older adults responds to training or about the efficacy of ECC contractions as training stimuli in these subjects, even though muscle contractions of this type are performed in most training regimens and daily physical activities. In this study, 15 physically active, healthy older women [68 (5) years; mean (SD)] completed an 8-week resistance training program of two sessions per week. Training consisted of three sets of eight repetitions of CONC ankle plantar flexion (PF) and ECC dorsiflexion (DF), at greater than 80% of the initial peak torque, in a standing position only. Subjects were tested in standing and supine positions for: (1) strength over a range of 10° DF to 20° PF for both CONC and ECC; DF and PF (2) passive resistive torque of the plantar flexors at 6°/s; and (3) DF and PF rate of torque development. All strength testing and training was done at 30°/s. Significant increases (P < 0.01) were found for both CONC DF (↑30%) and ECC DF (↑17%) peak torque in the standing position. No significant changes occurred for DF strength as measured with the subjects in the supine position, PF strength in either position, passive resistive torque, or rate of torque development. In summary, strength gains occurred only in the dorsiflexors, which were trained using ECC contractions. Improvements in DF strength were specific to the position of training, which has implications for the transferability of strength gains to functional tasks such as maintaining gait. Accepted: 17 January 1997  相似文献   

18.
Howler groups are usually spatially cohesive and stable in composition; however, more flexible grouping patterns occur in some social groups. We analyzed the associative and subgrouping patterns of males living in a group with fission-fusion social organization. Based on information from previous studies on Alouatta palliata and other primates and in the current socioecological models, we established initial predictions on the variations in male behavior according to several socioecological factors. We studied associative behavior via scan sampling at 15-min intervals to register the identity of males in the subgroups and the presence and number of receptive females. We calculated an association index that was then transformed into a measure of association strength. We found individual association trends, as well as important seasonal differences in the subgrouping patterns of males. During the dry season the presence of many receptive females resulted in reduced levels of association, and therefore fewer males per subgroup. The scenario changed during the wet season, when males grouped together significantly more and kinship relationships were a major determinant for individual association preferences.  相似文献   

19.
Levelt’s four propositions (L1–L4), which characterize the relation between changes in “stimulus strength” in the two eyes and percept alternations, are considered benchmark for binocular rivalry models. It was recently demonstrated that adaptation mutual-inhibition models of binocular rivalry capture L4 only in a limited range of input strengths, predicting an increase rather than a decrease in dominance durations with increasing stimulus strength for weak stimuli. This observation challenges the validity of those models, but possibly L4 itself is invalid. So far, L1–L4 have been tested mainly by varying the contrast of static stimuli, but since binocular rivalry breaks down at low contrasts, it has been difficult to study L4. To circumvent this problem, and to test if the recent revision of L2 has more general validity, we studied changes in binocular rivalry evoked by manipulating coherence of oppositely-moving random-dot stimuli in the two eyes, and compared them against the effects of stimulus contrast. Thirteen human observers participated. Both contrast and coherence manipulations in one eye produced robust changes in both eyes; dominance durations of the eye receiving the stronger stimulus increased while those of the other eye decreased, albeit less steeply. This is inconsistent with L2 but supports its revision. When coherence was augmented in both eyes simultaneously, dominance durations first increased at low coherence, and then decreased for further increases in coherence. The same held true for the alternation periods. The initial increase in dominance durations was absent in the contrast experiments, but with coherence manipulations, rivalry could be tested at much lower stimulus strengths. Thus, we found that L4, like L2, is only valid in a limited range of stimulus strengths. Outside that range, the opposite is true. Apparent discrepancies between contrast and coherence experiments could be fully reconciled with adaptation mutual-inhibition models using a simple input transfer-function.  相似文献   

20.
There has been significant progress in understanding the process of protein translation in recent years. One of the best examples is the discovery of usage bias in successive synonymous codons and its role in eukaryotic translation efficiency. We observed here a similar type of bias in the other two life domains, bacteria and archaea, although the bias strength was much smaller than in eukaryotes. Among 136 prokaryotic genomes, 98 were found to have significant bias from random use of successive synonymous codons with Z scores larger than three. Furthermore, significantly different bias strengths were found between prokaryotes grouped by various genomic or biochemical characteristics. Interestingly, the bias strength measured by a general Z score could be fitted well (R = 0.83, P < 10−15) by three genomic variables: genome size, G + C content, and tRNA gene number based on multiple linear regression. A different distribution of synonymous codon pairs between protein-coding genes and intergenic sequences suggests that bias is caused by translation selection. The present results indicate that protein translation is tuned by codon (pair) usage, and the intensity of the regulation is associated with genome size, tRNA gene number, and G + C content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号