首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors through activation of Dvl2 and the small GTPase Rac1. Importantly, these effects can be exploited to potentiate the outcome of myogenic cell transplantation into dystrophic muscles. We observed that a short Wnt7a treatment markedly stimulated tissue dispersal and engraftment, leading to significantly improved muscle function. Moreover, myofibers at distal sites that fused with Wnt7a-treated cells were hypertrophic, suggesting that the transplanted cells deliver activated Wnt7a/Fzd7 signaling complexes to recipient myofibers. Taken together, we describe a viable and effective ex vivo cell modulation process that profoundly enhances the efficacy of stem cell therapy for skeletal muscle.  相似文献   

2.
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication. Wnt7a is expressed in the luminal epithelium, whereas the extracellular modulator of Wnt signaling, secreted frizzled-related protein 4 (SFRP4), is localized to the stroma. Studies have reported that SFRP4 expression is significantly decreased in endometrial carcinoma and that both SFRP4 and Wnt7a genes are differentially regulated in response to estrogenic stimuli. Aberrant Wnt7a signaling irrevocably causes organ defects and infertility and contributes to the onset of disease. However, specific frizzled receptors (Fzd) that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of SFRP4 in the endometrium has not been addressed. We show here that Wnt7a coimmunoprecipitates with Fzd5, Fzd10, and SFRP4 in Ishikawa cells. Wnt7a binding to Fzd5 was shown to activate beta-catenin/canonical Wnt signaling and increase cellular proliferation. Conversely, Wnt7a signaling mediated by Fzd10 induced a noncanonical c-Jun NH2-terminal kinase-responsive pathway. SFRP4 suppresses activation of Wnt7a signaling in both an autocrine and paracrine manner. Stable overexpression of SFRP4 and treatment with recombinant SFRP4 protein inhibited endometrial cancer cell growth in vitro. These findings support a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent on the Fzd repertoire of the cell and can be regulated by SFRP4.  相似文献   

3.
4.
The Wnt pathway is critical for normal development, and mutation of specific components is seen in carcinomas of diverse origins. The role of this pathway in lung tumorigenesis has not been clearly established. Recent studies from our laboratory indicate that combined expression of the combination of Wnt 7a and Frizzled 9 (Fzd 9) in Non-small Cell Lung Cancer (NSCLC) cell lines inhibits transformed growth. We have also shown that increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits transformed growth of NSCLC and promotes epithelial differentiation of these cells. The goal of this study was to determine whether the effects of Wnt 7a/Fzd 9 were mediated through PPARgamma. We found that Wnt 7a and Fzd 9 expression led to increased PPARgamma activity. This effect was not mediated by altered expression of the protein. Wnt 7a and Fzd 9 expression resulted in activation of ERK5, which was required for PPARgamma activation in NSCLC. SR 202, a known PPARgamma inhibitor, blocked the increase in PPARgamma activity and restored anchorage-independent growth in NSCLC expressing Wnt 7a and Fzd 9. SR 202 also reversed the increase in E-cadherin expression mediated by Wnt 7a and Fzd 9. These data suggest that ERK5-dependent activation of PPARgamma represents a major effector pathway mediating the anti-tumorigenic effects of Wnt 7a and Fzd 9 in NSCLC.  相似文献   

5.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   

6.
Wnt7b is a Wnt ligand that has been demonstrated to play critical roles in several developmental processes, including lung airway and vascular development and chorion-allantois fusion during placental development. Wnt signaling involves the binding of Wnt ligands to cell surface receptors of the frizzled family and coreceptors of the LRP5/6 family. However, little is known of the ligand-receptor specificity exhibited by different Wnts, Fzds, and LRPs in Wnt signaling. Expression analysis of Fzds and LRP5/6 in the developing lung and vasculature showed that Fzd1, -4, -7, and -10 and LRP5/6 are expressed in tissue-specific patterns during lung development. Fzd1, -4, and -7 are expressed primarily in the developing lung mesenchyme, and Fzd10 is expressed in airway epithelium. LRP5 and LRP6 are expressed in airway epithelium during lung development, whereas LRP5 but not LRP6 expression is observed in the muscular component of large blood vessels, including the aorta. Cell transfection studies demonstrate that Wnt7b can activate the canonical Wnt pathway but not the noncanonical Wnt pathway in a cell-specific manner. Biochemical analysis demonstrates that Wnt7b can bind to Fzd1 and -10 on the cell surface and cooperatively activate canonical Wnt signaling with these receptors in the presence of LRP5. Together, these data demonstrate that Wnt7b signals through Fzd1 and -10 and LRP5 and implicate these Wnt coreceptors in the regulation of lung airway and vascular development.  相似文献   

7.
Frizzled-3 (Fzd3), highly expressed in both the central nervous system (CNS) and skin, plays essential roles in axonal growth and guidance during the CNS development and may be involved in maintenance of skin integrity, although its ligand remains undetermined. In this study, we demonstrate that Wnt5a specifically binds to Fzd3 in vitro and triggers phosphorylation of Akt mediated by phosphatidylinositol-3 kinase (PI3K), but not that of ERK or protein kinase C, in human primary-cultured dermal fibroblasts. We have further found that such Wnt5a/Fzd3-triggered activation of the PI3K/Akt signal promotes integrin-mediated adhesion of human dermal fibroblasts to collagen I-coated dishes. Based on another finding that Wnt5a/Fzd3-triggered activation of the PI3K/Akt signal was blocked by an excess amount of a recombinant Fzd3-cysteine-rich domain (CRD), but not by that of a recombinant Fzd6-CRD, it is concluded that Wnt5a is a natural ligand of Fzd3 that triggers the PI3K/Akt signal and promotes adhesion of human dermal fibroblasts.  相似文献   

8.
Vertebrate Wnt proteins activate several distinct pathways. Intrinsic differences among Wnt ligands and Frizzled (Fzd) receptors, and the availability of pathway-specific coreceptors, LRP5/6, and Ror2, affect pathway selection. Here, we show that a secreted glycoprotein, Cthrc1, is involved in selective activation of the planar cell polarity (PCP) pathway by Wnt proteins. Although Cthrc1 null mutant mice appeared normal, the introduction of a heterozygous mutation of a PCP gene, Vangl2, resulted in abnormalities characteristic of PCP mutants. In HEK293T cells, Cthrc1 activated the PCP pathway but suppressed the canonical pathway. Cell-surface-anchored Cthrc1 bound to Wnt proteins, Fzd proteins, and Ror2 and enhanced the interaction of Wnt proteins and Fzd/Ror2 by forming the Cthrc1-Wnt-Fzd/Ror2 complex. Consistent with this, Ror2 mutant mice also showed PCP-related abnormalities in the inner ear. These results suggest that Cthrc1 is a Wnt cofactor protein that selectively activates the Wnt/PCP pathway by stabilizing ligand-receptor interaction.  相似文献   

9.
10.
The serine/threonine kinase Akt is an upstream positive regulator of the mammalian target of rapamycin (mTOR). However, the mechanism by which Akt activates mTOR is not fully understood. The known pathway by which Akt activates mTOR is via direct phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2), which is a negative regulator of mTOR. Here we establish an additional pathway by which Akt inhibits TSC2 and activates mTOR. We provide for the first time genetic evidence that Akt regulates intracellular ATP level and demonstrate that Akt is a negative regulator of the AMP-activated protein kinase (AMPK), which is an activator of TSC2. We show that in Akt1/Akt2 DKO cells AMP/ATP ratio is markedly elevated with concomitant increase in AMPK activity, whereas in cells expressing activated Akt there is a dramatic decrease in AMP/ATP ratio and a decline in AMPK activity. Currently, the Akt-mediated phosphorylation of TSC2 and the inhibition of AMPK-mediated phosphorylation of TSC2 are viewed as two separate pathways, which activate mTOR. Our results demonstrate that Akt lies upstream of these two pathways and induces full inhibition of TSC2 and activation of mTOR both through direct phosphorylation and by inhibition of AMPK-mediated phosphorylation of TSC2. We propose that the activation of mTOR by Akt-mediated cellular energy and inhibition of AMPK is the predominant pathway by which Akt activates mTOR in vivo.  相似文献   

11.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

12.
The mammalian target of rapamycin (mTOR) is a mediator of cell growth, survival, and energy metabolism at least partly through its ability to regulate mRNA translation. mTOR is activated downstream of growth factors such as insulin, cytokines such as TNF, and Akt-dependent signaling associated with oncoprotein expression. mTOR is negatively controlled by the tuberous sclerosis complex 1/2 (TSC1/2), and activation of Akt induces phosphorylation of TSC2, which blocks the repressive TSC1/2 activity. Previously, we showed that activation of mTOR in PTEN-deficient cancer cells involves IkappaB kinase (IKK) alpha, a catalytic subunit of the IKK complex that controls NF-kappaB activation. Recently, a distinct IKK subunit, IKKbeta, was shown to phosphorylate TSC1 to promote mTOR activation in an Akt-independent manner in certain cells stimulated with TNF and in some cancer cells. In this study, we have explored the involvement of both IKKalpha and IKKbeta in insulin- and TNF-induced mTOR activation. Insulin activation of mTOR requires Akt in a manner that involves IKKalpha, preferentially to IKKbeta, and TSC2 phosphorylation. TNF, in most cells examined, activates Akt to use IKKalpha to control mTOR activation. In MCF7 cells, TNF does not activate Akt and requires IKKbeta to activate mTOR. The results show that Akt-dependent signaling, induced by cytokines or insulin, alters the IKK subunit-dependent control of mTOR.  相似文献   

13.
Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both β-catenin dependent pathway, and β-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.  相似文献   

14.
15.
Platelet-derived growth factor (PDGF) and its receptor are known to be substantially elevated in lung tissues and pulmonary arterial smooth muscle cells (PASMC) isolated from patients and animals with pulmonary arterial hypertension. PDGF has been shown to phosphorylate and activate Akt and mammalian target of rapamycin (mTOR) in PASMC. In this study, we investigated the role of PDGF-mediated activation of Akt signaling in the regulation of cytosolic Ca(2+) concentration and cell proliferation. PDGF activated the Akt/mTOR pathway and, subsequently, enhanced store-operated Ca(2+) entry (SOCE) and cell proliferation in human PASMC. Inhibition of Akt attenuated the increase in cytosolic Ca(2+) concentration due to both SOCE and PASMC proliferation. This effect correlated with a significant downregulation of stromal interacting molecule (STIM) and Orai, proposed molecular correlates for SOCE in many cell types. The data from this study present a novel pathway for the regulation of Ca(2+) signaling and PASMC proliferation involving activation of Akt in response to upregulated expression of PDGF. Targeting this pathway may lead to the development of a novel therapeutic option for the treatment of pulmonary arterial hypertension.  相似文献   

16.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

17.
Wnt3a activates proliferation of fibroblasts cells via activation of both extracellular signal-regulated kinase (ERK) and Wnt/beta-catenin signaling pathways. In this study, we show that the phosphatidyl inositol 3 kinases (PI3K)-Akt pathway is also involved in the Wnt3a-induced proliferation. Akt was activated within 30 min by Wnt3a in NIH3T3 cells. By Wnt3a treatment, activated Akt was transiently accumulated in nucleus although beta-catenin was accumulated in the nucleus of cells in a prolonged manner. The Wnt3a-induced Akt activation was not affected by siRNA-mediated reduction of beta-catenin, indicating that Wnt3a-induced Akt activation may occur independently of beta-catenin. The Wnt3a-induced Akt activation was abolished by pre-treatment with PI3K inhibitor, LY294002 and Wortmanin, but not by MEK inhibitor, U0126, indicating that Wnt3a activates Akt via PI3K. The growth and proliferation induced by Wnt3a were blocked by treatments of the PI3K inhibitors. Furthermore, Wnt3a-induced proliferation was blocked by Akt siRNA. These results reveal that the PI3K-Akt pathway mediates the Wnt3a-induced growth and proliferation of NIH3T3 cells.  相似文献   

18.
The phenotypic plasticity of mature vascular smooth muscle cells (VSMCs) facilitates angiogenesis and wound healing, but VSCM dedifferentiation also contributes to vascular pathologies such as intimal hyperplasia. Insulin/insulin-like growth factor I (IGF-I) is unique among growth factors in promoting VSMC differentiation via preferential activation of phosphatidylinositol 3-kinase (PI3K) and Akt. We have previously reported that rapamycin promotes VSMC differentiation by inhibiting the mammalian target of rapamycin (mTOR) target S6K1. Here, we show that rapamycin activates Akt and induces contractile protein expression in human VSMC in an insulin-like growth factor I-dependent manner, by relieving S6K1-dependent negative regulation of insulin receptor substrate-1 (IRS-1). In skeletal muscle and adipocytes, rapamycin relieves mTOR/S6K1-dependent inhibitory phosphorylation of IRS-1, thus preventing IRS-1 degradation and enhancing PI3K activation. We report that this mechanism is functional in VSMCs and crucial for rapamycin-induced differentiation. Rapamycin inhibits S6K1-dependent IRS-1 serine phosphorylation, increases IRS-1 protein levels, and promotes association of tyrosine-phosphorylated IRS-1 with PI3K. A rapamycin-resistant S6K1 mutant prevents rapamycin-induced Akt activation and VSMC differentiation. Notably, we find that rapamycin selectively activates only the Akt2 isoform and that Akt2, but not Akt1, is sufficient to induce contractile protein expression. Akt2 is required for rapamycin-induced VSMC differentiation, whereas Akt1 appears to oppose contractile protein expression. The anti-restenotic effect of rapamycin in patients may be attributable to this unique pattern of PI3K effector regulation wherein anti-differentiation signals from S6K1 are inhibited, but pro-differentiation Akt2 activity is promoted through an IRS-1 feedback signaling mechanism.  相似文献   

19.
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.KEY WORDS: Skeletal muscle, Muscle atrophy pathophysiology, TGF-β signaling, Myostatin, Denervation atrophy  相似文献   

20.
The recovery of atrophied muscle mass in animals is thought to be dependent on a number of factors including hormones, cytokines, and/or growth factor expression. The Akt/mammalian target of rapamycin (mTOR) signaling pathway is believed to be activated by these various factors, resulting in skeletal muscle growth through the initiation of protein synthesis. It was hypothesized that surgical removal of the ovaries (Ovx) may alter activation of the Akt/mTOR signaling pathway, a mechanism necessary for muscle regrowth. To test this, 36 Sprague-Dawley rats underwent Ovx or sham surgeries. A portion of the animals were then subjected to hindlimb unloading (HLU) for 28 days. After HLU, one group of Sham and Ovx rats underwent a 14-day recovery period in which the animals were allowed free cage ambulation. The HLU animals demonstrated approximately 21-27% reduction in medial gastrocnemius muscle mass irrespective of whether the ovaries were intact or not. The Sham animals that were reloaded recovered their atrophied muscle mass; however, the Ovx group failed to recover any of the atrophied muscle mass with reloading. The failure to recover muscle mass in the Ovx group was associated with reduced phosphorylation levels of both Akt and p70s6k, whereas in the Sham recovery animals no reductions were found in Akt phosphorylation and significant increases in p70s6k activation were detected. Finally, no differences were detected in mTOR phosphorylation in any of Sham or Ovx groups. These results suggest that ovariectomy surgeries could be detrimental to the recovery of atrophied muscle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号