首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of chicken litter on Meloidogyne arenaria in tomato plants cv. Rutgers were determined in the greenhouse. Tomato seedlings were transplanted into a sandy soil amended with five rates of chicken litter and inoculated with 2,000 M. arenaria eggs. After 10 days, total numbers of nematodes in the roots decreased with increasing rates of chicken litter. After 46 days, egg numbers also decreased with increasing litter rates. In another experiment, soil was amended with two litter types, N-P-K fertilizer, and the two primary constituents of chicken litter (manure and pine-shaving bedding). After 10 days, numbers of nematodes in roots were smaller in chicken-excrement treatments as compared to nonexcrement treatments. At 46 days, there were fewer nematode eggs in chicken-excrement treatments compared to nonexcrement treatments. Egg numbers also were smaller for fertilizer and pine-shaving amendments as compared to nonamended controls. Chicken litter and manure amendments suppressed plant growth by 10 days after inoculation but enhanced root weights at 46 days after inoculation. Amendment of soil with chicken litter suppressed M. arenaria and may provide practical control of root-knot nematodes as part of an integrated management system.  相似文献   

2.
Broiler chicken litter was kept as a stacked heap on a poultry farm, and samples were collected up to 9 months of storage. Chicken litter inoculated with desiccation-adapted Salmonella cells was heat-treated at 75, 80, 85, and 150°C. Salmonella populations decreased in all these samples during heat treatment, and the inactivation rates became lower in chicken litter when storage time was extended from 0 to 6 months. There was no significant difference (P > 0.05) in thermal resistance of Salmonella in 6- and 9-month litter samples, indicating that a threshold for thermal resistance was reached after 6 months. Overall, the thermal resistance of Salmonella in chicken litter was affected by the storage time of the litter. The changes in some chemical, physical, and microbiological properties during storage could possibly contribute to this difference. Moisture and ammonia could be two of the most significant factors influencing the thermal resistance of Salmonella cells in chicken litter. Our results emphasize the importance of adjusting time and temperature conditions for heat processing chicken litter when it is removed from the chicken house at different time intervals.  相似文献   

3.
Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination.  相似文献   

4.
The role of microbes associated with chicken litter in the suppression of Meloidogyne arenaria in amended soil was investigated. Amended soil treatments were prepared, including combinations of sterile and nonsterile chicken litter and soil. Microbial biomass in different treatments was compared by measuring carbon dioxide evolution. There was less CO₂ evolved in sterile litter than in nonsterile litter treatments. Tomato seedlings cv. Rutgers were transplanted into soil mixtures and inoculated with 2,000 M. arenaria eggs. After 10 days, fewer second-stage juveniles (J2) had penetrated the roots in soils amended with nonsterile litter than sterile litter. The effects of sterile and nonsterile litter-amended soil solutions on M. arenaria eggs and J2 were observed over a period of 6 days. A lower percentage of eggs remained apparently healthy in nonsterile than in sterile-amended soil solutions over 6 days. Microbial degradation of the egg shells was apparent. Fewer J2 survived in sterile- and nonsterile-amended-soil solutions as compared to water controls.  相似文献   

5.
应用微生物与秸秆降低鸡粪氨气释放量   总被引:3,自引:0,他引:3  
为减轻大量禽畜废弃物中氨气流失对环境的污染,研究和优化了微生物与秸秆等辅料对氨气释放量的影响。结果表明,F468、M1?M9等除臭微生物能显著降低氨气的释放量,其中F468是最优微生物,其它微生物与F468的配伍并没有显著增强F468降低氨气释放量的能力,有些微生物还降低了其能力,因此选择单一微生物法降低氨气释放量。单独添加辅料对降低氨气的释放影响较小,辅料与微生物的配伍可大量降低氨气的释放量。5%的F468与10%的秸秆配伍在1?5 d降低88%的释放量。应用微生物与秸秆不仅降低氨气挥发对环境的危害,也是秸秆资源化利用的有效途径之一。  相似文献   

6.
The population dynamics of the citrus nematode, Tylenchulus semipenetrans, on navel orange trees was studied from January 2012 to September 2012. The highest population of the citrus nematode appeared in May 2012 in the soil of navel orange trees, and the highest nematode population in roots appeared in August in the same year. Control of the citrus nematode by using smashed garlic cloves, powders of olive leaves and orange peels, an organic manure, chicken litter, either alone or in combination with a biocide, and sincocin compared to two nematicides, fenamiphos 10%G and oxamyl 24%L, was carried out in April 2012 .The best results for controlling the citrus nematode were obtained four months after the addition of the tested materials in soil; the highest nematode percentages reduction obtained were 90.9%, for smashed garlic cloves, and 72.8%, for chicken litter. On roots, the best results were 92.3% for garlic cloves and 92.0% for oxamyl, one month after application. The concomitant treatments of sincocin plus garlic clove or sicocin plus chicken litter were most effective in managing T. semipenetrans on navel orange trees after four and five months of application.  相似文献   

7.
AIMS: To detect the presence of methanogens in the faeces of broiler chicks during the first 2 weeks of age. METHODS AND RESULTS: Chicken faecal samples from 120 broiler chicks were incubated for methane gas formation and methanogenic archaea were analysed using real-time PCR. The copy number of the order Methanobacteriales 16S rDNA gene in chicken faeces when the broilers were 3-12 days of age, litter and house flies collected in the bird house ranged from 4.19 to 5.51 log(10) g(-1) wet weight. The number of positive methane culture tubes increased from 25% to 100% as the birds aged. CONCLUSIONS: Methanogens were successfully detected in faecal samples from 3- to 12-day-old broilers, as well as litter and house flies using real-time PCR. The copy number of methanogenic 16S rDNA gene in these samples was also similar to the number observed in litter and house flies. SIGNIFICANCE AND IMPACT OF THE STUDY: The same methanogens consistently appeared in chicken faeces a few days after birth. Detection of the methanogenic bacteria in litter and house flies implicated them as potential environmental sources for methanogen colonization in broiler chicks.  相似文献   

8.
The nematicidal activities of ammonium sulfate, chicken litter and chitin, alone or in combination with neem (Azadirachta indica) extracts were tested against Meloidogyne javanica. Soil application of these amendments or the neem extracts alone did not reduce the root galling index of tomato plants or did so only slightly, but application of the amendments in combination with the neem extracts reduced root galling significantly. Soil analysis indicated that the neem extract inhibited the nitrification of the ammonium released from the amendments and extended the persistence of the ammonium concentrations in the soil. In microplot experiments, tomato plants were grown in pots filled with soils from the treated microplots. The galling indices of tomato plants grown in soil treated with ammonium sulfate or chicken litter in combination with the neem extract or a chemical nitrification inhibitor were far lower than those of plants grown in the control soil or in soil treated with chicken litter, neem extract or nitrification inhibitor alone. However, plants grown in the microplots showed only slight reductions in galling, probably because the soil amendments were inadequately mixed compared to their application in the pot experiments. The extended exposure of nematodes to ammonia as a result of nitrification inhibition by the neem extracts appeared to be the cause of the enhanced nematicidal activity of the ammonia-releasing amendments.  相似文献   

9.
Microbiology - The microbiota of chicken litter remains largely unexplored, despite its leading role in the formation of volatile odorants and unpleasant odors. One of the main components of the...  相似文献   

10.
Ammonia suppressants are applied to chicken litter to decrease ammonia levels. And mushroom (Agaricus bisporus) producers use poultry litter to increase the nitrogen in the compost. To determine the influence of ammonia suppressants used in poultry litter on compost preparation and mushroom production, four mushroom crops were cultivated from compost prepared using litter treated with PLT, Barn Fresh and Impact-P at 25.22 kg/100 m2, 40 kg/100 m2, and 0.49 kg/100 m2, respectively, during the poultry production process. In general, no significant differences (P>0.05) were noted between treatments for total nitrogen, ammonia, pH, EC, ash, and moisture when compost or the headspace air was sampled during compost preparation throughout all stages. Nor were mushroom yields or counts significantly affected (P>0.05) by the presence of ammonia suppressants in the poultry litter. Thus, the mushroom industry can confidently use poultry litter amended with PLT, Impact-P, and Barn Fresh when used at the recommended rates.  相似文献   

11.
Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.  相似文献   

12.
The study was undertaken to investigate the effects of carbon to nitrogen (C:N) ratio and turning frequency (TF) on the loss of total nitrogen (TN) during composting of chicken litter (a mixture of chicken manure, waste feed, feathers and sawdust) with a view to producing good quality compost. Carbon to nitrogen ratios of 20:1, 25:1 and 30:1 and TF of 2, 4 and 6 days were experimented. The initial physico-chemical properties of the litter were determined. During the composting process, moisture level in the piles was periodically replenished to 55% and the temperature, pH and TN of the chicken litter were periodically monitored. Also, the dry matter (DM), total carbon (TC), total phosphorus (P) and total potassium (K) were examined at the end of composting. The results showed that both C:N ratio and TF had significant (p < or = 0.05) effect on pile temperature, pH changes, TN, TC, P and K losses while DM was only affected (p < or = 0.05) by C:N ratio. All treatments reached maturation at about 87 days as indicated by the decline of pile temperatures to near ambient temperature. Losses of TN, which were largely attributed to volatilization of ammonia (NH3), were highest within the first 28 days when the pile temperatures and pH values were above 33 degrees C and 7.7, respectively. Moisture loss increased as C:N ratio and TF increased. In conclusion, the treatment with a combination of 4 days TF and C:N ratio 25:1 (T4R25) had the minimum TN loss (70.73% of the initial TN) and this indicated the most efficient combination.  相似文献   

13.
Aim: The aim of this study was to develop a novel approach for characterizing the growth and persistence of Campylobacter in different poultry‐rearing environments. Specifically, we constructed bioluminescent Campylobacter strains and used them to monitor the survival of these pathogens in litter (bedding) material. Methods and Results: We inserted shuttle plasmids carrying the luminescence genes (luxCDABE) into C. jejuni and C. coli to construct bioluminescent strains of these pathogens. The strains were spiked into microcosms containing samples of litter‐washings and dry litter collected from different enclosures that housed broiler chickens. Our results show that C. jejuni and C. coli survived for at least 20 days in reused (old) litter while the growth of these pathogens was inhibited in clean (new) litter. Furthermore, our results suggest that the availability of nutrients and the condition of the litter (reused vs new) are important factors in the persistence of these pathogens. Conclusions: Reused litter can potentially predispose chickens to Campylobacter contamination and maintaining clean litter might reduce the incidences of colonization with these pathogens. Significance and Impact of the Study: Bioluminescence provided a simple, sensitive, and rapid approach for analysing the growth dynamics of Campylobacter. Using this technology, we highlighted the potential role of litter material in maintaining these pathogens in the chicken environment.  相似文献   

14.
There are about 130,000 hectares of land in South Africa that have been under black wattle plantation for a long time and whose soils have become more acidic than those from contiguous land without the tree. This incubation study investigated the effectiveness of lime, chicken manure and leaf litter ash to ameliorate the soil acidity. Lime and chicken manure were applied in pots at rates equivalent to 0, 5, 10 and 20 Mg ha(-1) while ash was applied at 0, 3 and 5 Mg ha(-1). In comparison to the control, the application of all the three amendments caused significant increases in soil pH(KCL) (4.1-5.6) and reduced the exchangeable acidity. The liming effectiveness of the amendments varied with rate and type of amendment and were in the order: lime > chicken manure > ash. A similar trend was evident in the concentration of exchangeable bases (Ca, Mg and K) in the soil. The effectiveness of ash and chicken manure as liming material was 0.12 and 0.26 respectively compared to lime. The difference in liming effect between ash and chicken manure was related to their alkalinity concentration. It was concluded that both amendments have the potential to be used as liming materials and merit further field evaluation.  相似文献   

15.
Aim: To identify a DNA sequence specific to a bacterium found in poultry litter that was indicative of faecal contamination by poultry sources. Methods and Results: Faecally contaminated poultry litter and soils were used as source material for the development of a quantitative polymerase chain reaction (qPCR) method targeting the 16S rRNA gene of a Brevibacterium sp. The identified sequence had 98% nucleotide identity to the 16S rRNA gene of Brevibacterium avium. The qPCR method was tested on 17 soiled litter samples; 40 chicken faecal samples; and 116 nontarget faecal samples from cattle, swine, ducks, geese, and human sewage collected across the United States. The 571‐bp product was detected in 76% of poultry‐associated samples, but not in 93% of faecal samples from other sources. Marker concentrations were 107–109 gene copies per gram in soiled litter, up to 105 gene copies per gram in spread‐site soils, and 107 gene copies per litre in field run‐off water. Results were corroborated by a blinded study conducted by a second laboratory. Conclusion: The poultry‐specific PCR product is a useful marker gene for assessing the impact of faecal contamination as a result of land‐applied poultry litter. Significance and Impact of the Study: This study describes the first quantitative, sensitive and specific microbial source tracking method for the detection of poultry litter contamination.  相似文献   

16.
The persistence of S. Enteritidis PT4 was studied on a free-range breeding chicken farm which had been depopulated following identification of the organism in breeding birds. The site was sampled periodically for 26 months after depopulation and the organism was found to persist in litter, dried faeces and feed, but not in dust within empty poultry houses, for the whole of that period. Salmonella Enteritidis PT4 was also found in soil samples after 8 months but not 13 months and in faeces from wild mice, foxes and cats but not wild birds or badgers. The organism was also found in adult and larval forms of ground beetles and centipedes. Addition of pullets to a contaminated pen or inclusion of contaminated litter, feed or beetles/larvae to feed did not result in acquisition of infection by birds.  相似文献   

17.
The long-term effectiveness of soil solarization integrated with (integration of pest management [IPM]) a biological control agent (Trichoderma virens), chemical fungicide (pentachloronitrobenzene [PCNB]), organic amendment (chicken litter) or physical method (black agriplastic mulch) to reduce southern blight (Sclerotium rolfsii) and southern root-knot diseases (Meloidogyne incognita) were evaluated on vegetable production. Results showed that the long-term effectiveness of IPM plus soil solarization reduced soilborne diseases of vegetables more than two years following the termination of solarization. These disease management strategies in 1991 and 1992, following soil solarization in 1990, reduced the numbers of sclerotia in the soil, and the number of plants killed by southern blight and root-knot of tomatoes, compared to nonsolarized bare soil treatment. The integration of a reduced dosage level of PCNB or T. virens in field plots, reduced southern blight of tomatoes by 100% and 71%, respectively, in solarized soil, compared to nonsolarized bare soil two years following soil solarization. PCNB effectively controlled southern blight in nonsolarized bare soil both years. All solarized treatments, except PCNB plus solarized soil increased tomato yields compared to nonsolarized bare soil plots. In the second study (1992) following soil solarization in 1991, the effectiveness of solarized bare soil, and nonsolarized bare soil mulched with black agriplastic film, with or without Reemay spunbounded polyester row cover, were effective in reducing root-knot of tomatoes as indicated by the root-knot gall index. Following a one year fallow period in 1994 three years following soil solarization, the root-knot gall index for severity of tomato roots grown in solarized bare soil, nonsolarized bare soil, black agriplastic mulched bare nonsolarized soil and black agriplastic mulched solarized bare soil, were 1.0, 3.0, 3.0 and 2.0, respectively, on a 0–5 scale, where 0=0% and 5=100% root-knot galled. In the third study 1992 and 1993, different dosage levels of chicken litter were used to amend soil artificially infested with sclerotia of S. rolfsii at different depths following solarization, decreased the number of viable sclerotia by 85–100%. All solarized treatments and nonsolarized bare soil amended with 18.8 MT/ha of chicken litter, were effective in controlling southern root-knot damage, and postharvest storage root rots of sweetpotato storage roots (Fusarium root rot [Fusarium solani] and Java black rot [Diplodia tubericola]). Our study showed that all soil solarization treatments, and soils amended with chicken litter, stimulated a shift in the soil microbial population dynamics. Rhizobacteria of Bacillus spp. and fluorescent pseudomonads increased significantly in the rhizosphere, rhizoplane, and interior root tissues of tomatoes and sweetpoatoes, grown in solarized soil compared to nonsolarized soil. These microorganisms may have contributed to the increased growth response of vegetables and some were probably suppressive to soilborne diseases  相似文献   

18.
陆晓辉  丁贵杰  陆德辉 《生态学报》2017,37(7):2325-2333
马尾松凋落叶分解缓慢,促进其凋落物分解,提高养分归还速度,维持地力稳定,已成为马尾松人工林可持续经营中的关键问题。基于此,采用正交试验L_9(3~4)设计,选择菌剂、表面活性剂、不同碳氮营养液和有机肥料4种人工调控因素,在马尾松林下开展凋落叶分解调控试验,以掌握不同调控组合对凋落叶分解速率和化学质量的影响及作用效果等。结果表明:有机肥料和菌剂显著影响马尾松凋落叶分解速率,腐解剂2和鸡粪联合作用更利于分解。马尾松凋落叶在林下自然分解过程中,化学质量参数向着利于分解的方向变化,N、P以积累为主,C/N、C/P、L/N和L/P呈降低态势,人为调控措施加速了这一变化进程;不同调控措施对凋落叶化学质量参数的影响不尽相同,添加有机肥料有利于剩余凋落叶N、P含量升高,C/N、C/P、L/N和L/P的降低;菌剂腐解剂2有利于L/P、C/P的降低;表面活性剂OP-10有利于凋落叶L/N的降低。人工调控下,调控因素可通过改变凋落物化学质量影响其分解速率,N含量和C/N是影响马尾松凋落叶分解速率的主要因素;而P浓度、L/N、C/P、L/P对分解速率的影响不规律或不显著。  相似文献   

19.
Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease pressure was high (i.e., disease ratings high in uninoculated plots). A 1991 batch of turkey litter compost and the 1990 batch of Endicott biosolids were consistently suppressive to foliar symptoms of Pythium root rot on creeping bentgrass. This study indicates that suppression of Pythium diseases of creeping bentgrass in batches of brewery sludge and Endicott biosolids composts, and possibly in other suppressive composts examined in less detail in this study, is related directly to the microbial activities in the composts. On the other hand, the mechanisms of Pythium suppression in turkey litter and perhaps other poultry-based composts is not related directly to the compost microbial activity. Although turkey litter showed a lack of suppressiveness in laboratory bioassays and low microbial populations and activity, it resulted in a significant and consistent level of suppressiveness in field experiments. Therefore, the microbiological properties of Pythium-suppressive composts may differ substantially, and measurements of microbial populations and activity may not be predictive of the level of disease suppression in all composts.  相似文献   

20.
The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号