首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In nitrogen (N)-limited systems, the response of symbiotic N fixation to elevated atmospheric [CO2] may be an important determinant of ecosystem responses to this global change. Experimental tests of the effects of elevated [CO2] have not been consistent. Although rarely tested, differences among legume species and N supply may be important. In a field free-air CO2 enrichment (FACE) experiment, we determined, for four legume species, whether the effects of elevated atmospheric [CO2] on symbiotic N fixation depended on soil N availability or species identity. Natural abundance and pool-dilution 15N methods were used to estimate N fixation. Although N addition did, in general, decrease N fixation, contrary to theoretical predictions, elevated [CO2] did not universally increase N fixation. Rather, the effect of elevated [CO2] on N fixation was positive, neutral or negative, depending on the species and N addition. Our results suggest that legume species identity and N supply are critical factors in determining symbiotic N-fixation responses to increased atmospheric [CO2].  相似文献   

2.
Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.  相似文献   

3.
Combined delta(13)C and delta(18)O analyses of leaf material were used to infer changes in photosynthetic capacity (A(max)) and stomatal conductance (g(l)) in Fagus sylvatica and Picea abies trees growing under natural and controlled conditions. Correlation between g(l) and delta(18)O in leaf cellulose (delta(18)O(cel)) allowed us to apply a semi-quantitative model to infer g(l) from delta(18)O(cel) and also interpret variation in delta(13)C as reflecting variation in A(max). Extraction of leaf cellulose was necessary, because delta(18)O from leaf organic matter (delta(18)O(LOM)) and delta(18)O(cel) was not reliably correlated. In juvenile trees, the model predicted elevated carbon dioxide (CO(2)) to reduce A(max) in both species, whereas ozone (O(3)) only affected beech by reducing CO(2) uptake via lowered g(l). In adult trees, A(max) declined with decreasing light level as g(l) was unchanged. O(3) did not significantly affect isotopic signatures in leaves of adult trees, reflecting the higher O(3) susceptibility of juvenile trees under controlled conditions. The isotopic analysis compared favourably to the performance of leaf gas exchange, underlining that the semi-quantitative model approach provides a robust way to gather time-integrated information on photosynthetic performance of trees under multi-faced ecological scenarios, in particular when information needed for quantitative modelling is only scarcely available.  相似文献   

4.
By altering foliage quality, exposure to elevated levels of atmospheric CO(2) potentially affects the amount of herbivore damage experienced by plants. Here, we quantified foliar carbon (C) and nitrogen (N) content, C : N ratio, phenolic levels, specific leaf area (SLA) and the amount of leaf tissue damaged by chewing insects for 12 hardwood tree species grown in plots exposed to elevated CO(2) (ambient plus 200 microl l(-1)) using free-air CO(2) enrichment (FACE) over 3 yr. The effects of elevated CO(2) varied considerably by year and across species. Elevated CO(2) decreased herbivore damage across 12 species in 1 yr but had no detectable effect in others. Decreased damage may have been related to lower average foliar N concentration and SLA and increased C : N ratio and phenolic content for some species under elevated compared with ambient CO(2). It remains unclear how these changes in leaf properties affect herbivory. Damage to the leaves of hardwood trees by herbivorous insects may be reduced in the future as the concentration of CO(2) continues to increase, perhaps altering the trophic structure of forest ecosystems.  相似文献   

5.
6.
大气CO2浓度升高和N沉降以及二者之间的耦合作用对陆地森林生态系统的影响是当前国际生态学界关注的热点之一。该实验运用大型开顶箱(open-top chamber, OTC)研究: 1)高CO2浓度(700 μmol×mol-1) +高N沉降(100 kg N×hm-2×a-1) (CN); 2)高CO2浓度(700 μmol×mol-1)和背景N沉降(CC); 3)高N沉降(100 kg N×hm-2×a-1)和背景CO2浓度(NN); 4)背景CO2和背景N沉降(CK) 4种处理对南亚热带主要乡土树种木荷(Schima superba)、红锥(Castanopsis hystrix)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)、海南红豆(Ormosia pinnata)叶片元素含量的影响。研究结果表明, 大气CO2浓度升高对5种乡土树种叶片元素含量有较大的影响, 除海南红豆叶片的Ca含量外, 其他树种的叶片元素含量在高CO2浓度处理下都显著升高(p < 0.05); 而在N沉降处理下, 5个树种的叶片K和Ca含量都降低。大气CO2浓度升高与N沉降处理对5种乡土树种植物叶片元素含量影响的交互作用不是很明显, 仅仅木荷和红鳞蒲桃的叶片Ca和Mn以及海南红豆的叶片Mn含量在大气CO2浓度上升和N沉降交互处理下显著下降, 而肖蒲桃的叶片P含量在大气CO2浓度上升和N沉降交互处理下显著上升。  相似文献   

7.
A 2-yr phytotron study was conducted to investigate the intra- and inter-specific competitive behaviour of juvenile beech (Fagus sylvatica) and spruce (Picea abies). Competitiveness was analysed by quantifying the resource budgets that occur along structures and within occupied space of relevance for competitive interaction. Ambient and elevated CO(2) and ozone (O(3)) regimes were applied throughout two growing seasons as stressors for provoking changes in resource budgets, growth and allocation to facilitate the competition analysis. The hypothesis tested was that the ability to sequester space at low structural cost will determine the competitive success. Spruce was a stronger competitor than beech, as displayed by its higher above-ground biomass increments in mixed culture compared with monoculture. A crucial factor in the competitive success of spruce was its ability to enlarge crown volume at low structural costs, supporting the hypothesis. Interspecific competition with spruce resulted in a size-independent readjustment of above-ground allocation in beech (reduced leaf : shoot biomass ratio). The efficient use of resources for above-ground space sequestration proved to be a parameter that quantitatively reflects competitiveness.  相似文献   

8.
We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (W(P)) to elevated CO(2) concentration ([CO(2)]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO(2) partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO(2)]. The mean ratio of final plant dry mass at elevated to ambient [CO(2)] (M(E)/M(A)) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in M(E)/M(A) among legume species (0.92-2.35), whereas nonlegumes varied much less (1.21-1.29). Variation among legume species in M(E)/M(A) was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. W(P) increased markedly in response to elevated [CO(2)] in all species. The ratio of intercellular to ambient CO(2) partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO(2)], as did carbon isotope discrimination, suggesting that W(P) should increase proportionally for a given increase in atmospheric [CO(2)]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO(2)] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO(2)].  相似文献   

9.
Saplings of Fagus sylvatica and Picea abies were grown in mono‐ and mixed cultures in a 2‐year phytotron study under all four combinations of ambient and elevated ozone (O3) and carbon dioxide (CO2) concentrations. The hypotheses tested were (1) that the competitiveness of beech rather than spruce is negatively affected by the exposure to enhanced O3 concentrations, (2) spruce benefits from the increase of resource availability (elevated CO2) in the mixed culture and (3) that the responsiveness of plants to CO2 and O3 depends on the type of competition (i.e. intra vs. interspecific). Beech displayed a competitive disadvantage when growing in mixture with spruce: after two growing seasons under interspecific competition, beech showed significant reductions in leaf gas exchange, biomass development and crown volume as compared with beech plants growing in monoculture. In competition with spruce, beech appeared to be nitrogen (N)‐limited, whereas spruce tended to benefit in terms of its plant N status. The responsiveness of the juvenile trees to the atmospheric treatments differed between species and was dominated by the type of competition: spruce growth benefited from elevated CO2 concentrations, while beech growth suffered from the enhanced O3 regime. In general, interspecific competition enhanced these atmospheric treatment effects, supporting our hypotheses. Significant differences in root : shoot biomass ratio between the type of competition under both elevated O3 and CO2 were not caused by readjustments of biomass partitioning, but were dependent on tree size. Our study stresses that competition is an important factor driving plant development, and suggests that the knowledge about responses of plants to elevated CO2 and/or O3, acquired from plants growing in monoculture, may not be transferred to plants grown under interspecific competition as typically found in the field.  相似文献   

10.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

11.
The degree to which rising atmospheric CO(2) will be offset by carbon (C) sequestration in forests depends in part on the capacity of trees and soil microbes to make physiological adjustments that can alleviate resource limitation. Here, we show for the first time that mature trees exposed to CO(2) enrichment increase the release of soluble C from roots to soil, and that such increases are coupled to the accelerated turnover of nitrogen (N) pools in the rhizosphere. Over the course of 3 years, we measured in situ rates of root exudation from 420 intact loblolly pine (Pinus taeda L.) roots. Trees fumigated with elevated CO(2) (200 p.p.m.v. over background) increased exudation rates (μg C cm(-1) root h(-1) ) by 55% during the primary growing season, leading to a 50% annual increase in dissolved organic inputs to fumigated forest soils. These increases in root-derived C were positively correlated with microbial release of extracellular enzymes involved in breakdown of organic N (R(2) = 0.66; P = 0.006) in the rhizosphere, indicating that exudation stimulated microbial activity and accelerated the rate of soil organic matter (SOM) turnover. In support of this conclusion, trees exposed to both elevated CO(2) and N fertilization did not increase exudation rates and had reduced enzyme activities in the rhizosphere. Collectively, our results provide field-based empirical support suggesting that sustained growth responses of forests to elevated CO(2) in low fertility soils are maintained by enhanced rates of microbial activity and N cycling fuelled by inputs of root-derived C. To the extent that increases in exudation also stimulate SOM decomposition, such changes may prevent soil C accumulation in forest ecosystems.  相似文献   

12.
Five species of sap-feeding homoptera were studied on Fagus sylvatica and Acer pseudoplatanus and exposed to elevated concentrations of carbon dioxide (600 μL L–1). The concentration of total soluble amino acids in foliage of F. sylvatica was unaffected by growing saplings in elevated atmospheric CO2 concentrations. Although experiments on individual aphids indicated poorer performance of Phyllaphis fagi (fewer, smaller nymphs produced), resultant populations did not differ from those in ambient (350 μL L–1) conditions. The area of beech foliage stippled by the leafhopper Fagocyba cruenta was similar at ambient and elevated CO2 concentrations. The concentration of total amino acids and that of serine of A. pseudoplatanus foliage were significantly lower at elevated CO2 concentrations. However, the relative growth rates of two aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and one leafhopper Ossiannilssonola callosa were not significantly different in elevated CO2. No evidence was found that, under the conditions of these experiments, populations of aphids and leafhoppers will change as concentrations of CO2 increase.  相似文献   

13.
Our understanding of how elevated CO2 and interactions with other factors will affect coastal plant communities is limited. Such information is particularly needed for transitional communities where major vegetation types converge. Tropical mangroves (Avicennia germinans) intergrade with temperate salt marshes (Spartina alterniflora) in the northern Gulf of Mexico, and this transitional community represents an important experimental system to test hypotheses about global change impacts on critical ecosystems. We examined the responses of A. germinans (C3) and S. alterniflora (C4), grown in monoculture and mixture in mesocosms for 18 months, to interactive effects of atmospheric CO2 and pore water nitrogen (N) concentrations typical of these marshes. A. germinans, grown without competition from S. alterniflora, increased final biomass (35%) under elevated CO2 treatment and higher N availability. Growth of A. germinans was severely curtailed, however, when grown in mixture with S. alterniflora, and enrichment with CO2 and N could not reverse this growth suppression. A field experiment using mangrove seedlings produced by CO2‐ and N‐enriched trees confirmed that competition from S. alterniflora suppressed growth under natural conditions and further showed that herbivory greatly reduced survival of all seedlings. Thus, mangroves will not supplant marsh vegetation due to elevated CO2 alone, but instead will require changes in climate, environmental stress, or disturbance to alter the competitive balance between these species. However, where competition and herbivory are low, elevated CO2 may accelerate mangrove transition from the seedling to sapling stage and also increase above‐ and belowground production of existing mangrove stands, particularly in combination with higher soil N.  相似文献   

14.
Short-term studies of tree growth at elevated CO2 suggest that forest productivity may increase as atmospheric CO2 concentrations rise, although low soil N availability may limit the magnitude of this response. There have been few studies of growth and N2 fixation by symbiotic N2-fixing woody species under elevated CO2 and the N inputs these plants could provide to forest ecosystems in the future. We investigated the effect of twice ambient CO2 on growth, tissue N accretion, and N2 fixation of nodulated Alnus glutinosa (L.) Gaertn. grown under low soil N conditions for 160 d. Root, nodule, stem, and leaf dry weight (DW) and N accretion increased significantly in response to elevated CO2. Whole-plant biomass and N accretion increased 54% and 40%, respectively. Delta-15N analysis of leaf tissue indicated that plants from both treatments derived similar proportions of their total N from symbiotic fixation suggesting that elevated CO2 grown plants fixed approximately 40% more N than did ambient CO2 grown plants. Leaves from both CO2 treatments showed similar relative declines in leaf N content prior to autumnal leaf abscission, but total N in leaf litter increased 24% in elevated compared to ambient CO2 grown plants. These results suggest that with rising atmospheric CO2 N2-fixing woody species will accumulate greater amounts of biomass N through N2 fixation and may enhance soil N levels by increased litter N inputs.  相似文献   

15.
The effect of differences in nitrogen (N) availability and source on growth and nitrogen metabolism at different atmospheric CO(2) concentrations in Prosopis glandulosa and Prosopis flexuosa (native to semiarid regions of North and South America, respectively) was examined. Total biomass, allocation, N uptake, and metabolites (e.g., free NO(3)(-), soluble proteins, organic acids) were measured in seedlings grown in controlled environment chambers for 48 d at ambient (350 ppm) and elevated (650 ppm) CO(2) and fertilized with high (8.0 mmol/L) or low (0.8 mmol/L) N (N(level)), supplied at either 1 : 1 or 3 : 1 NO(3)(-) : NH(4)(+) ratios (N(source)). Responses to elevated CO(2) depended on both N(level) and N(source), with the largest effects evident at high N(level). A high NO(3)(-) : NH(4)(+) ratio stimulated growth responses to elevated CO(2) in both species when N was limiting and increased the responses of P. flexuosa at high N(level). Significant differences in N uptake and metabolites were found between species. Seedlings of both species are highly responsive to N availability and will benefit from increases in CO(2), provided that a high proportion of NO(3)- to NH(4)-N is present in the soil solution. This enhancement, in combination with responses that increase N acquisition and increases in water use efficiency typically found at elevated CO(2), may indicate that these semiarid species will be better able to cope with both nutrient and water deficits as CO(2) levels rise.  相似文献   

16.
Stomatal responses to atmospheric change have been well documented through a range of laboratory- and field-based experiments. Increases in atmospheric concentration of CO(2) ([CO(2)]) have been shown to decrease stomatal conductance (g(s)) for a wide range of species under numerous conditions. Less well understood, however, is the extent to which leaf-level responses translate to changes in ecosystem evapotranspiration (ET). Since many changes at the soil, plant, and canopy microclimate levels may feed back on ET, it is not certain that a decrease in g(s) will decrease ET in rain-fed crops. To examine the scaling of the effect of elevated [CO(2)] on g(s) at the leaf to ecosystem ET, soybean (Glycine max) was grown in field conditions under control (approximately 375 micromol CO(2) mol(-1) air) and elevated [CO(2)] (approximately 550 micromol mol(-1)) using free air CO(2) enrichment. ET was determined from the time of canopy closure to crop senescence using a residual energy balance approach over four growing seasons. Elevated [CO(2)] caused ET to decrease between 9% and 16% depending on year and despite large increases in photosynthesis and seed yield. Ecosystem ET was linked with g(s) of the upper canopy leaves when averaged across the growing seasons, such that a 10% decrease in g(s) results in a 8.6% decrease in ET; this relationship was not altered by growth at elevated [CO(2)]. The findings are consistent with model and historical analyses that suggest that, despite system feedbacks, decreased g(s) of upper canopy leaves at elevated [CO(2)] results in decreased transfer of water vapor to the atmosphere.  相似文献   

17.
Here, we investigated the effect of different heat-wave intensities applied at two atmospheric CO(2) concentrations ([CO(2) ]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO(2) ] (380 or 700?μmol?mol(-1) ) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums. We measured gas exchange and fluorescence parameters before, during and after a mid-summer heat wave. The +12°C heat wave, significantly reduced net photosynthesis (A(net) ) in both species and [CO(2) ] treatments but this effect was diminished in elevated [CO(2) ]. The decrease in A(net) was accompanied by a decrease in F(v) '/F(m) ' in P.?taeda and Φ(PSII) in Q.?rubra. Our findings suggest that, if soil moisture is adequate, trees will experience negative effects in photosynthetic performance only with the occurrence of extreme heat waves. As elevated [CO(2) ] diminished these negative effects, the future climate may not be as detrimental to plant communities as previously assumed.  相似文献   

18.
The 15N isotope dilution technique and the N difference method were used to estimate N2 fixation by clover growing in a mixture with ryegrass, in a field experiment and a controlled environment experiment. Values obtained using N difference were approximately 25% lower than those estimated using 15N isotope dilution. In the field experiment there was a measured N benefit to grass growing with clover, equivalent to 42.7 kgN ha-1. The grass in the mixture had a lower atom %15N content and a higher N content than grass in a monoculture; therefore values for N2 fixation were different depending on choice of control plant i.e. monoculture or mixture grass. In the controlled environment experiment there were no significant differences between either the atom %15N contents or the N contents of monoculture grass and grass growing in a mixture with clover. It is concluded that there is a long term indirect transfer of N from clover to associated grass which can lead to errors in estimates of N2 fixation.  相似文献   

19.
Altered environmental conditions may change populations of arbuscular mycorrhizal fungi and thereby affect mycorrhizal functioning. We investigated whether 8 yr of free-air CO2 enrichment has selected fungi that differently influence the nutrition and growth of host plants. In a controlled pot experiment, two sets of seven randomly picked single spore isolates, originating from field plots of elevated (60 Pa) or ambient CO2 partial pressure (pCO2), were inoculated on nodulated Trifolium repens (white clover) plants. Fungal isolates belonged to the Glomus claroideum or Glomus intraradices species complex, and host plants were clonal micropropagates derived from nine genets. Total nitrogen (N) concentration was increased in leaves of plants inoculated with fungal isolates from elevated-pCO2 plots. These isolates took up nearly twice as much N from the soil as isolates from ambient-pCO2 plots and showed much greater stimulation of biological N2 fixation. The morpho-species identity of isolates had a more pronounced effect on N2 fixation and on root length colonized than isolate identity. We conclude that rising atmospheric pCO2 may select for fungal strains that will help their host plants to meet increased N demands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号