首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Degenerate primers were used to amplify large fragments of reductive-dehalogenase-homologous (RDH) genes from genomic DNA of two Dehalococcoides populations, the chlorobenzene- and dioxin-dechlorinating strain CBDB1 and the trichloroethene-dechlorinating strain FL2. The amplicons (1,350 to 1,495 bp) corresponded to nearly complete open reading frames of known reductive dehalogenase genes and short fragments (approximately 90 bp) of genes encoding putative membrane-anchoring proteins. Cloning and restriction analysis revealed the presence of at least 14 different RDH genes in each strain. All amplified RDH genes showed sequence similarity with known reductive dehalogenase genes over the whole length of the sequence and shared all characteristics described for reductive dehalogenases. Deduced amino acid sequences of seven RDH genes from strain CBDB1 were 98.5 to 100% identical to seven different RDH genes from strain FL2, suggesting that both strains have an overlapping substrate range. All RDH genes identified in strains CBDB1 and FL2 were related to the RDH genes present in the genomes of Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain BAV1; however, sequence identity did not exceed 94.4 and 93.1%, respectively. The presence of RDH genes in strains CBDB1, FL2, and BAV1 that have no orthologs in strain 195 suggests that these strains possess dechlorination activities not present in strain 195. Comparative sequence analysis identified consensus sequences for cobalamin binding in deduced amino acid sequences of seven RDH genes. In conclusion, this study demonstrates that the presence of multiple nonidentical RDH genes is characteristic of Dehalococcoides strains.  相似文献   

5.
6.
7.
While many anaerobic microbial communities are capable of reductively dechlorinating tetrachloroethene (PCE) and trichloroethene (TCE) to dichloroethene (DCE), vinyl chloride (VC), and finally ethene, the accumulation of the highly toxic intermediates, cis-DCE (cDCE) and VC, presents a challenge for bioremediation processes. Members of the genus Dehalococcoides are apparently solely responsible for dechlorination beyond DCE, but isolates of Dehalococcoides each metabolize only a subset of PCE dechlorination intermediates and the interactions among distinct Dehalococcoides strains that result in complete dechlorination are not well understood. Here we apply quantitative PCR to 16S rRNA and reductase gene sequences to discriminate and track Dehalococcoides strains in a TCE enrichment derived from soil taken from the Alameda Naval Air Station (ANAS) using a four-gene plasmid standard. This standard increased experimental accuracy such that 16S rRNA and summed reductase gene copy numbers matched to within 10%. The ANAS culture was found to contain only a single Dehalococcoides 16S rRNA gene sequence, matching that of D. ethenogenes 195, but both the vcrA and tceA reductive dehalogenase genes. Quantities of these two genes in the enrichment summed to the quantity of the Dehalococcoides 16S rRNA gene. Further, between ANAS subcultures enriched on TCE, cDCE, or VC, the relative copy number of the two dehalogenases shifted 14-fold, indicating that the genes are present in two different Dehalococcoides strains. Comparison of cell yields in VC-, cDCE-, and TCE-enriched subcultures suggests that the tceA-containing strain is responsible for nearly all of the TCE and cDCE metabolism in ANAS, whereas the vcrA-containing strain is responsible for all of the VC metabolism.  相似文献   

8.
Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.  相似文献   

9.
10.
11.
Degenerate primers were used to amplify large fragments of reductive-dehalogenase-homologous (RDH) genes from genomic DNA of two Dehalococcoides populations, the chlorobenzene- and dioxin-dechlorinating strain CBDB1 and the trichloroethene-dechlorinating strain FL2. The amplicons (1,350 to 1,495 bp) corresponded to nearly complete open reading frames of known reductive dehalogenase genes and short fragments (approximately 90 bp) of genes encoding putative membrane-anchoring proteins. Cloning and restriction analysis revealed the presence of at least 14 different RDH genes in each strain. All amplified RDH genes showed sequence similarity with known reductive dehalogenase genes over the whole length of the sequence and shared all characteristics described for reductive dehalogenases. Deduced amino acid sequences of seven RDH genes from strain CBDB1 were 98.5 to 100% identical to seven different RDH genes from strain FL2, suggesting that both strains have an overlapping substrate range. All RDH genes identified in strains CBDB1 and FL2 were related to the RDH genes present in the genomes of Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain BAV1; however, sequence identity did not exceed 94.4 and 93.1%, respectively. The presence of RDH genes in strains CBDB1, FL2, and BAV1 that have no orthologs in strain 195 suggests that these strains possess dechlorination activities not present in strain 195. Comparative sequence analysis identified consensus sequences for cobalamin binding in deduced amino acid sequences of seven RDH genes. In conclusion, this study demonstrates that the presence of multiple nonidentical RDH genes is characteristic of Dehalococcoides strains.  相似文献   

12.
Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment.  相似文献   

13.
Bacteria of the genus Dehalococcoides are important members of bioremediation communities because of their ability to detoxify chloroethenes to the benign end product ethene. Genome-enabled studies conducted with Dehalococcoides ethenogenes 195 have revealed that two ATP-binding cassette (ABC)-type amino acid transporters are expressed during its exponential growth stages. In light of previous findings that Casamino Acids enhanced its dechlorination activity, we hypothesized that strain 195 is capable of importing amino acids from its environment to facilitate dechlorination and growth. To test this hypothesis, we applied isotopomer-based dilution analysis with (13)C-labeled acetate to differentiate the amino acids that were taken up by strain 195 from those synthesized de novo and to determine the physiological changes caused by the significantly incorporated amino acids. Our results showed that glutamate/glutamine and aspartate/asparagine were almost exclusively synthesized by strain 195, even when provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine, and methionine were identified as the four most highly incorporated amino acids, at levels >30% of respective proteinogenic amino acids. When either phenylalanine or all four highly incorporated amino acids were added to the defined mineral medium, the growth rates, dechlorination activities, and yields of strain 195 were enhanced to levels similar to those observed with supplementation with 20 amino acids. However, genes for the putative ABC-type amino acids transporters and phenylalanine biosynthesis exhibited insignificant regulation in response to the imported amino acids. This study also demonstrates that using isotopomer-based metabolite analysis can be an efficient strategy for optimizing nutritional conditions for slow-growing microorganisms.  相似文献   

14.
15.
Dehalococcoides ethenogenes strain 195 reductively dechlorinates tetrachloroethene (PCE) and trichloroethene (TCE) to vinyl chloride and ethene using H2 as an electron donor. PCE- and TCE-reductive dehalogenase (RD) activities were mainly membrane associated, whereas only about 20% of the hydrogenase activity was membrane associated. Experiments with methyl viologen (MV) were consistent with a periplasmic location for the RDs or a component feeding electrons to them. The protonophore uncoupler tetrachlorosalicylanilide did not inhibit reductive dechlorination in cells incubated with H2 and PCE and partially restored activity in cells incubated with the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. Benzyl viologen or diquat (Eo' approximately -360 mV) supported reductive dechlorination of PCE or TCE at rates comparable to MV (-450 mV) in cell extracts.  相似文献   

16.
The enrichment culture SL2 dechlorinating tetrachloroethene (PCE) to ethene with strong trichloroethene (TCE) accumulation prior to cis-1,2-dichloroethene (cis-DCE) formation was analyzed for the presence of organohalide respiring bacteria and reductive dehalogenase genes (rdhA). Sulfurospirillum-affiliated bacteria were identified to be involved in PCE dechlorination to cis-DCE whereas “Dehalococcoides”-affiliated bacteria mainly dechlorinated cis-DCE to ethene. Two rdhA genes highly similar to tetrachloroethene reductive dehalogenase genes (pceA) of S. multivorans and S. halorespirans were present as well as an rdhA gene very similar to the trichloroethene reductive dehalogenase gene (tceA) of “Dehalococcoides ethenogenes” strain 195. A single strand conformation polymorphism (SSCP) method was developed allowing the simultaneous detection of the three rdhA genes and the estimation of their abundance. SSCP analysis of different SL2 cultures showed that one pceA gene was expressed during PCE dechlorination whereas the second was expressed during TCE dechlorination. The tceA gene was involved in cis-DCE dechlorination to ethene. Analysis of the internal transcribed spacer region between the 16S and 23S rRNA genes revealed two distinct sequences originating from Sulfurospirillum suggesting that two Sulfurospirillum populations were present in SL2. Whether each Sulfurospirillum population was catalyzing a different dechlorination step could however not be elucidated.  相似文献   

17.
18.
Dechlorination of spiked 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) was investigated in sediment microcosms from three polychlorinated dibenzo-p-dioxin and dibenzofuran (CDD/F)-contaminated sites: River Kymijoki, Finland; Gulf Island Pond, Maine; and Lake Roosevelt, Washington. Dechlorination was stimulated by addition of electron donor and halogenated priming compounds, and bioaugmentation by a mixed culture containing Dehalococcoides ethenogenes strain 195. Amendment with 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB) promoted rapid dechlorination of 1,2,3,4-TeCDD to 2-monochlorodibenzo-p-dioxin (2MCDD) in Gulf Island Pond and River Kymijoki sediments, however, only slow dechlorination to 1,4-dichlorodibenzo-p-dioxin was observed in Lake Roosevelt sediments. The dechlorination pathway in 1,2,3,4-TeCB-amended microcosms proceeded mainly via 1,3-dichlorodibenzo-p-dioxin, with less production of 2,3-dichlorodibenzo-p-dioxin in comparison with other treatments. Microbial community analyses indicated that Dehalococcoides-like bacteria were enriched with 1,2,3,4-TeCB. Quantitative real-time PCR analysis of Dehalococcoides-specific 16S rRNA genes and the D. ethenogenes strain 195 dehalogenase gene, tceA, showed at least an order of magnitude higher gene copy numbers in the bioaugmented than in the nonbioaugmented microcosms. An active-dechlorinating population is present in the River Kymijoki and biostimulation may enhance both native Dehalococcoides spp. and the bioaugmented D. ethenogenes strain 195.  相似文献   

19.
Bacteria belonging to the genus Dehalococcoides play a key role in the complete detoxification of chloroethenes as these organisms are the only microbes known to be capable of dechlorination beyond dichloroethenes to vinyl chloride (VC) and ethene. However, Dehalococcoides strains usually grow slowly with a doubling time of 1 to 2 days and have complex nutritional requirements. Here we describe the growth of Dehalococcoides ethenogenes 195 in a defined mineral salts medium, improved growth of strain 195 when the medium was amended with high concentrations of vitamin B(12), and a strategy for maintaining Dehalococcoides strains on lactate by growing them in consortia. Although strain 195 could grow in defined medium spiked with approximately 0.5 mM trichloroethene (TCE) and 0.001 mg/liter vitamin B(12), the TCE dechlorination and cellular growth rates doubled when the vitamin B(12) concentration was increased 25-fold to 0.025 mg/liter. In addition, the final ratios of ethene to VC increased when the higher vitamin concentration was used, which reflected the key role that cobalamin plays in dechlorination reactions. No further improvement in dechlorination or growth was observed when the vitamin B(12) concentration was increased to more than 0.025 mg/liter. In defined consortia containing strain 195 along with Desulfovibrio desulfuricans and/or Acetobacterium woodii and containing lactate as the electron donor, tetrachloroethene ( approximately 0.4 mM) was completely dechlorinated to VC and ethene and there was concomitant growth of Dehalococcoides cells. In the cultures that also contained D. desulfuricans and/or A. woodii, strain 195 cells grew to densities that were 1.5 times greater than the densities obtained when the isolate was grown alone. The ratio of ethene to VC was highest in the presence of A. woodii, an organism that generates cobalamin de novo during metabolism. These findings demonstrate that the growth of D. ethenogenes strain 195 in defined medium can be optimized by providing high concentrations of vitamin B(12) and that this strain can be grown to higher densities in cocultures with fermenters that convert lactate to generate the required hydrogen and acetate and that may enhance the availability of vitamin B(12).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号