首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion.  相似文献   

2.
3.
BACKGROUND: In the fruit fly Drosophila, the Inscuteable protein localises to the apical cell cortex in neuroblasts and directs both the apical-basal orientation of the mitotic spindle and the basal localisation of the protein determinants Numb and Prospero during mitosis. Asymmetric localisation of Inscuteable is initiated during neuroblast delamination by direct binding to Bazooka, an apically localised protein that contains protein-interaction motifs known as PDZ domains. How apically localised Inscuteable directs asymmetric cell divisions is unclear. RESULTS: A novel 70 kDa protein called Partner of Inscuteable (Pins) and a heterotrimeric G-protein alpha subunit were found to bind specifically to the functional domain of Inscuteable in vivo. The predicted sequence of Pins contained tetratrico-peptide repeats (TPRs) and motifs implicated in binding Galpha proteins. Pins colocalised with Inscuteable at the apical cell cortex in interphase and mitotic neuroblasts. Asymmetric localisation of Pins required both Inscuteable and Bazooka. In epithelial cells, which do not express inscuteable, Pins was not apically localised but could be recruited to the apical cortex by ectopic expression of Inscuteable. In pins mutants, these epithelial cells were not affected, but neuroblasts showed defects in the orientation of their mitotic spindle and the basal asymmetric localisation of Numb and Miranda during metaphase. Although localisation of Inscuteable in pins mutants was initiated correctly during neuroblast delamination, Inscuteable became homogeneously distributed in the cytoplasm during mitosis. CONCLUSIONS: Pins and Inscuteable are dependent on each other for asymmetric localisation in delaminated neuroblasts. The binding of Pins to Galpha protein offers the intriguing possibility that Inscuteable and Pins might orient asymmetric cell divisions by localising or locally modulating a heterotrimeric G-protein signalling cascade at the apical cell cortex.  相似文献   

4.
Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localisation. These data also provide initial evidence that both processes are coupled to cell cycle progression and growth control, thereby regulating a binary switch between proliferative stem self-renewal and differentiative progenitor cell specification. Considering the evolutionary conservation of some of the mechanisms and molecules involved, these data provide a rationale and genetic model for understanding stem cell self-renewal and differentiation in general. The new data gained in Drosophila may therefore lead to conceptual advancements in understanding the aetiology and treatment of human neurological disorders such as brain tumor formation and neurodegenerative diseases.  相似文献   

5.
Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localization. These data also provide initial evidence that both processes are coupled to cell cycle progression and growth control, thereby regulating a binary switch between proliferative stem self-renewal and differentiative progenitor cell specification. Considering the evolutionary conservation of some of the mechanisms and molecules involved, these data provide a rationale and genetic model for understanding stem cell self-renewal and differentiation in general. The new data gained in Drosophila may therefore lead to conceptual advancements in understanding the aetiology and treatment of human neurological disorders such as brain tumor formation and neurodegenerative diseases.Key words: stem cell, progenitor, neuroblast, asymmetric division, self-renewal, differentiation, drosophila, prospero, brain tumor  相似文献   

6.
Although programmed cell death (PCD) plays a crucial role throughout Drosophila CNS development, its pattern and incidence remain largely uninvestigated. We provide here a detailed analysis of the occurrence of PCD in the embryonic ventral nerve cord (VNC). We traced the spatio-temporal pattern of PCD and compared the appearance of, and total cell numbers in, thoracic and abdominal neuromeres of wild-type and PCD-deficient H99 mutant embryos. Furthermore, we have examined the clonal origin and fate of superfluous cells in H99 mutants by DiI labeling almost all neuroblasts, with special attention to segment-specific differences within the individually identified neuroblast lineages. Our data reveal that although PCD-deficient mutants appear morphologically well-structured, there is significant hyperplasia in the VNC. The majority of neuroblast lineages comprise superfluous cells, and a specific set of these lineages shows segment-specific characteristics. The superfluous cells can be specified as neurons with extended wild-type-like or abnormal axonal projections, but not as glia. The lineage data also provide indications towards the identities of neuroblasts that normally die in the late embryo and of those that become postembryonic and resume proliferation in the larva. Using cell-specific markers we were able to precisely identify some of the progeny cells, including the GW neuron, the U motoneurons and one of the RP motoneurons, all of which undergo segment-specific cell death. The data obtained in this analysis form the basis for further investigations into the mechanisms involved in the regulation of PCD and its role in segmental patterning in the embryonic CNS.  相似文献   

7.
Shu Y 《生理学报》2011,63(1):1-8
一种新颖的轴突断端(axon bleb)膜片钳记录方法大力促进了中枢神经系统轴突功能的研究。我们的工作应用这一方法揭示了大脑皮层锥体神经元的数码信号(具全或无特性的动作电位)的爆发和传播机制。在轴突始段(axon initial segment,AIS)远端高密度聚集的低阈值Na+通道亚型Nav1.6决定动作电位的爆发;而在AIS近端高密度聚集的高阈值Na+通道亚型Nav1.2促进动作电位向胞体和树突的反向传播。应用胞体和轴突的同时记录,我们发现胞体阈下膜电位的变化可以在轴突上传播较长的距离并可到达那些离胞体较近的突触前终末。进一步的研究证明了胞体膜电位的变化调控动作电位触发的突触传递,该膜电位依赖的突触传递是一种模拟式的信号传递。轴突上一类特殊K+通道(Kv1)的活动调制动作电位的波形,特别是其波宽,从而调控各种突触前膜电位水平下突触强度的变化。突触前终末的背景Ca2+浓度也可能参与模拟信号的传递。这些发现深化了我们对中枢神经系统内神经信号处理基本原理的认识,进而帮助我们理解脑如何工作。  相似文献   

8.
Segmental determination in Drosophila central nervous system   总被引:5,自引:0,他引:5  
A Ghysen  L Y Jan  Y N Jan 《Cell》1985,40(4):943-948
We have analyzed the control of two segment-specific features in the central nervous system of Drosophila larvae. One of them is present only in the thoracic ganglia of the larva, where it represents the anlage of the adult leg neuromeres; the other is found in the first abdominal, as well as in the thoracic, ganglia. We show that mutations within the bithorax complex have parallel but independent effects on these neural structures and on the larval epidermis. We also show that the central nervous system is very sensitive to mild perturbations of the bithorax complex, and in particular to haploinsufficiency.  相似文献   

9.
作为一条新型信号转导通路 ,JAK STAT广泛参与细胞的生长、分化等过程。但目前对该通路的研究主要集中在造血及免疫系统 ,对其在中枢神经系统 (CNS)内的功能及作用机制尚没有完全阐明。本文对JAK STAT途径各成员在CNS内的表达、分布情况 ,以及该途径在CNS发育及病理状态下的功能变化进行了简要介绍  相似文献   

10.
11.
JAK-STAT信号转导途径与中枢神经系统   总被引:3,自引:0,他引:3  
作为一条新型信号转导通路,JAK-STAT广泛参与细胞的生长、分化等过程。但目前对该通路的研究主要集中在造血及免疫系统,对其在中枢神经系统(CNS)内的功能及作用机制的没有完全阐明。本文对JAK-STAT途径各成员在CNS内的表达、分布情况,以及该途径在CNS发育及病理状态下的功能变化进行了简要介绍。  相似文献   

12.
Metamorphosis of the central nervous system of Drosophila   总被引:2,自引:0,他引:2  
The study of the metamorphosis of the central nervous system of Drosophila focused on the ventral CNS. Many larval neurons are conserved through metamorphosis but they show pronounced remodeling of both central and peripheral processes. In general, transmitter expression appears to be conserved through metamorphosis but there are some examples of possible changes. Large numbers of new, adult-specific neurons are added to this basic complement of persisting larval cells. These cells are produced during larval life by embryonic neuroblasts that had persisted into the larval stage. These new neurons arrest their development soon after their birth but then mature into functional neurons during metamorphosis. Programmed cell death is also important for sculpting the adult CNS. One round of cell death occurs shortly after pupariation and a second one after the emergence of the adult fly.  相似文献   

13.
The stomatogastric nervous system (SNS) of Drosophila is a simply organized neural circuitry that innervates the anterior enteric system. Unlike the central and the peripheral nervous systems, the SNS derives from a compact epithelial anlage in which three invagination centers, each giving rise to an invagination fold headed by a tip cell, are generated. Tip cell selection involves lateral inhibition, a process in which Wingless (Wg) activity adjusts the range of Notch signaling. Here we show that RTK signaling mediated by the Drosophila homolog of the epidermal growth factor receptor, DER, plays a key role in two consecutive steps during early SNS development. Like Wg, DER signaling participates in adjusting the range of Notch-dependent lateral inhibition during tip cell selection. Subsequently, tip cells secrete the DER ligand Spitz and trigger local RTK signaling, which initiates morphogenetic movements resulting in the tip cell-directed invaginations within the SNS anlage.  相似文献   

14.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

15.
During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s). Therefore, multiple efforts have led to the development of different molecular imaging modalities to monitor stem cell grafting with the ultimate aim to accurately evaluate survival, fate and physiology of grafted stem cells and/or their micro-environment. Changes observed in one or more parameters determined by molecular imaging might be related to the observed clinical effect. In this context, our studies focus on the combined use of bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and histological analysis to evaluate stem cell grafting. BLI is commonly used to non-invasively perform cell tracking and monitor cell survival in time following transplantation, based on a biochemical reaction where cells expressing the Luciferase-reporter gene are able to emit light following interaction with its substrate (e.g. D-luciferin). MRI on the other hand is a non-invasive technique which is clinically applicable and can be used to precisely locate cellular grafts with very high resolution, although its sensitivity highly depends on the contrast generated after cell labeling with an MRI contrast agent. Finally, post-mortem histological analysis is the method of choice to validate research results obtained with non-invasive techniques with highest resolution and sensitivity. Moreover end-point histological analysis allows us to perform detailed phenotypic analysis of grafted cells and/or the surrounding tissue, based on the use of fluorescent reporter proteins and/or direct cell labeling with specific antibodies. In summary, we here visually demonstrate the complementarities of BLI, MRI and histology to unravel different stem cell- and/or environment-associated characteristics following stem cell grafting in the CNS of mice. As an example, bone marrow-derived stromal cells, genetically engineered to express the enhanced Green Fluorescent Protein (eGFP) and firefly Luciferase (fLuc), and labeled with blue fluorescent micron-sized iron oxide particles (MPIOs), will be grafted in the CNS of immune-competent mice and outcome will be monitored by BLI, MRI and histology (Figure 1).  相似文献   

16.
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.  相似文献   

17.
18.
Dendritic spines are a characteristic feature of a number of neurons in the vertebrate nervous system and have been implicated in processes that include learning and memory. In spite of this, there has been no comprehensive analysis of the presence of spines in a classical genetic system, such as Drosophila, so far. Here, we demonstrate that a subset of processes along the dendrites of visual system interneurons in the adult fly central nervous system, called LPTCs, closely resemble vertebrate spines, based on a number of criteria. First, the morphology, size, and density of these processes are very similar to those of vertebrate spines. Second, they are enriched in actin and devoid of tubulin. Third, they are sites of synaptic connections based on confocal and electron microscopy. Importantly, they represent a preferential site of localization of an acetylcholine receptor subunit, suggesting that they are sites of excitatory synaptic input. Finally, their number is modulated by the level of the small GTPase dRac1. Our results provide a basis to dissect the genetics of dendritic spine formation and maintenance and the functional role of spines. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

19.
The myelin-associated glycoprotein (MAG) is a type I membrane-spanning protein expressed exclusively in oligoden drocytes and Schwann cells. It has two generally known pathophysiological roles in the central nervous system (CNS): maintenance of myelin integrity and inhibition of CNS axonal regeneration. The subtle CNS phenotype resulting from genetic ablation of MAG expression has made mechanistic analysis of its functional role in these difficult. However, the past few years have brought some major revelations, particularly in terms of mechanisms of MAG signaling through the Nogo-66 receptor (NgR) complex. Although apparently converging through NgR, a readily noticeable fact is that the neuronal growth inhibitory effect of MAG differs from that of Nogo-66. This may result from the influence of coreceptors in the form of gangliosides or from MAG-specific neuronal receptors such as NgR2. MAG has several other neuronal binding partners, and some of these may modulate its interaction with the NgR complex or downstream signaling. This article discusses new findings in MAG-forward and-reverse signaling and its role in CNS pathophysiology.  相似文献   

20.
Cancer stem cells in the mammalian central nervous system   总被引:1,自引:0,他引:1  
Malignant tumours intrinsic to the central nervous system (CNS) are among the most difficult of neoplasms to treat effectively. The major biological features of these tumours that preclude successful therapy include their cellular heterogeneity, which renders them highly resistant to both chemotherapy and radiotherapy, and the propensity of the component tumour cells to invade, diffusely, the contiguous nervous tissues. The tumours are classified according to perceived cell of origin, gliomas being the most common generic group. In the 1970s transplacental administration of the potent neurocarcinogen, N-ethyl-N-nitrosourea (ENU), enabled investigation of the sequential development of brain and spinal neoplasms by electron microscopy and immunohistochemistry. The significance of the primitive cells of the subependymal plate in cellular origin and evolution of a variety of glial tumours was thereby established. Since then, the development of new cell culture methods, including the in vitro growth of neurospheres and multicellular tumour spheroids, and new antigenic markers of stem cells and glial/neuronal cell precursor cells, including nestin, Mushashi-1 and CD133, have led to a reappraisal of the histological classification and origins of CNS tumours. Moreover, neural stem cells may also provide new vectors in exciting novel therapeutic strategies for these tumours. In addition to the gliomas, stem cells may have been identified in paediatric tumours including cerebellar medulloblastoma, thought to be of external granule cell neuronal derivation. Interestingly, while the stem cell marker CD133 is expressed in these primitive neuroectodermal tumours (PNETs), the chondroitin sulphate proteoglycan neuronal/glial 2 (NG2), which appears to denote increased proliferative, but reduced migratory activity in adult gliomas, is rarely expressed. This is in contrast to the situation in the histologically similar supratentorial PNETs. A possible functional 'switch' between proliferation and migration in developing neural tumour cells may exist between NG2 and ganglioside GD3. The divergent pathways of differentiation of CNS tumours and the possibility of stem cell origin, for some, if not all, such neoplasms remain a matter for debate and continued research, but the presence of self-renewing neural stem cells in the CNS of both children and adults strongly suggests a role for these cells in tumour initiation and resistance to current therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号