首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

To evaluate the interaction between selected yeasts and bacteria and associate their metabolic activity with secondary cucumber fermentation.

Methods and Results

Selected yeast and bacteria, isolated from cucumber secondary fermentations, were inoculated as single and mixed cultures in a cucumber juice model system. Our results confirmed that during storage of fermented cucumbers and in the presence of oxygen, spoilage yeasts are able to grow and utilize the lactic and acetic acids present in the medium, which results in increased brine pH and the chemical reduction in the environment. These conditions favour opportunistic bacteria that continue the degradation of lactic acid. Lactobacillus buchneri, Clostridium bifermentans and Enterobacter cloacae were able to produce acetic, butyric and propionic acids, respectively, when inoculated in the experimental medium at pH 4·6. Yeast and bacteria interactions favoured the survival of Cl. bifermentans and E. cloacae at the acidic pH typical of fermented cucumbers (3·2), but only E. cloacae was able to produce a secondary product.

Conclusions

The methodology used in this study confirmed that a complex microbiota is responsible for the changes observed during fermented cucumber secondary fermentation and that certain microbial interactions may be essential for the production of propionic and butyric acids.

Significance and Impact of the Study

Understanding the dynamics of the development of secondary cucumber fermentation aids in the identification of strategies to prevent its occurrence and economic losses for the pickling industry.  相似文献   

2.
Summary Specific growth rate models of product-inhibited cell growth exist but are rarely applied to fermentations beyond ethanol and large-scale antibiotic production. The present paper summarizes experimental data and the development of a model for growth of the commercially important bacterium,Lactobacillus plantarum, in cucumber juice. The model provides an excellent correlation of data for the influence on bacterial growth rate of NaCl, protons (H+), and the neutral, inhibitory forms of acetic acid and the fermentation product, lactic acid. The effects of each of the variables are first modeled separately using established functional forms and then combined in the final model formulation.Nomenclature [C] inhibitory component concentration, mM - [C]max concentration of the inhibitory component where the specific growth rate is zero, mM, determined by model fitting - [H+] hydrogen ion concentration, mM - [HLa] undissociated lactic acid concentration, mM - [La] dissociated lactic acid concentration, mM - [Lat] total lactic acid ([HLa]+[La]) concentration, mM - [HAc] undissociated acetic acid concentration, mM - [Ac] dissociated acetic acid concentration, mM - [Act] total acetic acid ([HAc]+[Ac]) concentration, mM - [NaCl] sodium chloride concentration, %, w/v - specific growth rate, h–1 - max maximum specific growth rate, h–1 - 0 specific growth rate, h–1, at 0 concentration of additive - K ij inhibition coefficient - , ,K m coefficients determined by model fitting Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture or North Carolina Agricultural Research Service, nor does it imply approval to the exclusion of other products that may be suitable.  相似文献   

3.
An immobilised yeast, two-stage reactor system was applied to laboratory fermentations of wort. The first stage, the primary fermentation process was carried out in an up-flow gas-lift bioreactor, and in the second stage, fermentation was processed in column reactors consisting of eight packed-beds filled with both yeasts entrapped in three different polysaccharide hydrogels (calcium alginate, calcium pectate, sodium carrageenan) and with free yeast in parallel. The residence time for the two-stage immobilised system varied from 74 to 108 h. © Rapid Science Ltd. 1998  相似文献   

4.
5.
Saccharomyces cerevisiae is the main microorganism used in wine brewing, because this microbe has potent ability to produce alcohol dehydrogenase. We have recently discovered that some genera of mushroom produced alcohol dehydrogenase, and made wine by using a mushroom in place of S. cerevisiae. The highest alcohol concentration in this wine was achieved with Pleurotus ostreatus (2.6 M, 12.2%). In the case of Agaricus blazei, the same alcohol concentration (1.7 M, 8%) was produced under both aerobic and anaerobic conditions. This wine produced by A. blazei contained about 0.68% beta-D-glucan, which is known to have a preventive effects against cancer. The wine made by using Flammulina velutipes showed thrombosis-preventing activity, giving a prolonged thrombin clotting time 2.2-fold that of the control. Thus, the wine made by using mushroom seems to be a functional food which can be expected to have preventive effects against cancer and thrombosis.  相似文献   

6.
7.
Natto is a traditional Japanese food made from soybeans fermented by strains of Bacillus subtilis natto. It gives off a strong ammonia smell during secondary fermentation, and the biochemical basis for this ammonia production was investigated in this study. When natto was fermented by strain r22, ammonia production was shown to involve degradation of soybean proteins releasing amino acids, and only the glutamate contained in the natto obviously decreased, while the other amino acids increased during secondary fermentation. Strain r22 has two active glutamate dehydrogenase genes, rocG and gudB, and inactivating both genes reduced ammonia production by half, indicating that deamination of glutamate was one of the major ammonia-releasing reactions. In addition, urease encoded by ureABC was found to degrade urea during secondary fermentation. A triple mutant lacking rocG, gudB, and ureC exhibited minimal ammonia production, suggesting that the degradation of urea might be a further ammonia-releasing reaction.  相似文献   

8.
黄瓜枯萎病拮抗放线菌的筛选、鉴定及发酵条件优化   总被引:1,自引:0,他引:1  
【背景】黄瓜枯萎病是由尖孢镰刀菌(Fusarium oxysporum f. sp. cucumerinum)黄瓜专化型引起的土传真菌性病害,严重制约着黄瓜产业的发展。【目的】从河西走廊敦煌地区盐碱土壤中分离筛选出一株对黄瓜枯萎病病菌有良好拮抗效果的放线菌菌株,探究其分类地位及其最优发酵条件。【方法】采用稀释平板涂布法分离放线菌,平板对峙法、抑制菌丝生长速率法筛选拮抗菌株,通过培养特征、生理生化试验及16SrRNA基因序列分析确定其分类地位,利用单因素试验和正交试验方法确定其最优发酵配方及培养条件。【结果】菌株16-3-10鉴定为链霉菌属(Streptomyces sp.)菌株,最优发酵配方(g/L):小米10.0,乳糖20.0,蛋白胨1.0,NaCl 5.0,CaCO3 6.0,最优发酵条件:培养温度28°C,装瓶量50/250 mL,培养3 d,起始pH 10.0,抑菌率达82.50%,比优化前增加153.43%。【结论】菌株16-3-10对黄瓜枯萎病病菌具有显著的拮抗效果,有较好的应用前景。  相似文献   

9.
Solid state (substrate) fermentation (SSF) has been used successfully for the production of enzymes and secondary metabolites. These products are associated with the stationary phase of microbial growth and are produced on an industrial scale for use in agriculture and the treatment of disease. Many of these secondary metabolites are still produced by submerged liquid fermentations (SmF) even though production by this method has been shown to be less efficient than SSF. As large-scale production increases further, so do the costs and energy demands. SSF has been shown to produce a more stable product, requiring less energy, in smaller fermenters, with easier downstream processing measures. In this article we review an important area of biotechnology, since the recent evidence indicates that bacteria and fungi, growing under SSF conditions, are more than capable of supplying the growing global demand for secondary metabolites.  相似文献   

10.
11.
浓香型白酒窖池微生物群落结构特征   总被引:1,自引:1,他引:1  
窖池是中国白酒,尤其是浓香型大曲酒生产颇具特色的固态生物反应器,窖龄与微生物群落结构关系密切且复杂,对产品质量影响非常显著.本研究以微生物细胞膜的特征组分磷酸脂肪酸(PLFA)为指标,研究了不同窖龄(5年、100年和300 年)窖池窖泥、糟醅和黄水的微生物群落结构特征.结果表明:窖泥中总PLFA含量最高,糟醅次之,黄水最低.PLFA的组成因窖龄而异,黄水中总PLFA含量随窖池窖龄的增长而减小.窖泥中直链饱和脂肪酸含量最高,为PLFA总量的50.7%~73.9%,其中300年窖池窖泥最高.窖泥中表征革兰氏阳性(G+)厌氧细菌的PLFA含量较高,而糟醅和黄水中均以表征革兰氏阴性(G-)厌氧菌的PLFA含量较高.100年窖泥中表征G+菌、G-菌和厌氧菌的PLFA含量高于其他窖龄相应样品.5年窖窖泥、糟醅和黄水中真菌PLFA含量均高于其他窖龄相应样品.经主成分分析,5年窖和100年窖中主要变异菌群是G+菌和真菌,300年窖中主要变异菌群是细菌.描述窖池微生物群落特征的多样性指数可以选用PLFA的频次、Simpson优势度指数和Shannon多样性指数.  相似文献   

12.
Imprinted polymers were synthesized using a mixture of pigments, N‐glutamyl‐rubropuctamine, and N‐glutamyl‐monascorubramine (I) as the template, and 2‐methacrylamido‐6‐picoline or 4‐aminostyrene as functional monomers, to obtain recognition materials capable of forming hydrogen bonds and charge interactions, respectively, with carboxyl groups of target I in the binding sites. The polymers were prepared thermally at a template loading of 5 mol% using ethylene‐glycol dimethacrylate or trimethylolpropane trimethacrylate as crosslinkers and acetonitrile or tetrahydrofuran as porogens. The selective binding of I to both types of polymer was demonstrated, although aminostyrene‐based materials showed higher overall adsorption and were studied in more detail. It was shown that the kinetics of binding of I from ethyl‐acetate extracts of fermented Monascus sp. was very rapid and virtually all the pigment adsorbed can be released by washing the polymer with ethanol–water mixtures. The feasibility of reusing imprinted polymer in consecutive adsorption/desorption cycles was also demonstrated. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 232–239, 1999.  相似文献   

13.
ABSTRACT: BACKGROUND: Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum, Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of constitutive thl promoter. RESULTS: The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach led to the complete conversion of acetone into isopropanol, achieving a total alcohol titer of 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. CONCLUSIONS: The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 thus can be considered as a good host for further engineering of solvent/alcohol production.  相似文献   

14.
The cultivation of strains of the genus Streptosporangium in batch fermentations demonstrated that the optimal conditions for secondary metabolite production are completely different to those of the closely related genus Streptomyces. The dissolved oxygen tension (pO(2)) was identified as an important parameter for optimal production of secondary metabolites in submerged cultures. Extreme variations of this parameter by changes in aeration (gas flow), agitation system and stirrer speed showed a tremendous impact in production yields of all investigated strains. Finally, a 20-fold increase in productivity was observed by conditions of controlled oxygen excess compared to optimal fermentation conditions for Streptomyces strains.  相似文献   

15.
Strawberry guava (Psidium cattleianum) is a shade‐tolerant shrub or small tree invader in tropical and subtropical regions and is considered among the world's top 100 worst invasive species. Studies from affected regions report deleterious effects of strawberry guava invasion on native vegetation. Here we examine the life history demographics and environmental determinants of strawberry guava invasions to inform effective weed management in affected rainforest regions. We surveyed the vegetation of 8 mature rainforest and 33 successional sites at various stages of regeneration in the Australian Wet Tropics and found that strawberry guava invasion was largely restricted to successional forests. Strawberry guava exhibited high stem and seedling densities, represented approximately 8% of all individual stems recorded and 20% of all seedlings recorded. The species also had the highest basal area among all the non‐native woody species measured. We compared environmental and community level effects between strawberry guava‐invaded and non‐invaded sites, and modelled how the species basal area and recruitment patterns respond to these effects. Invaded sites differed from non‐invaded sites in several environmental features such as aspect, distance from intact forest blocks, as well as supported higher grass and herb stem densities. Our analysis showed that invasion is currently ongoing in secondary forests, and also that strawberry guava is able to establish and persist under closed canopies. If left unchecked, strawberry guava invasion will have deleterious consequences for native regenerating forest in the Australian Wet Tropics.  相似文献   

16.
Summary Aerobic fermentation of swine waste combined with corn produced differences in microbial and biochemical patterns dependent on use of fresh or stored excrement. Lactic acid fermentation and odor control resulted with either waste. Homofermentative lactic acid bacteria were present initially at 107 organisms/dry g with stored waste-corn cultures and total microflora amounted to 108 organisms/dry g. Fresh waste-corn fermentations initially yielded heterofermentative lactic acid bacteria at 107 organisms/dry g and total viable population was 109 organisms/dry g. These respective groups of lactic acid bacteria dominated from 12 through 144 h in cultures with either waste, and acid production (0.2 meq/dry g) decreased pH by 2 units to 4.5. The major acid component with stored waste-corn was lactic acid, whereas fresh waste-corn fermentation produced both lactic and homologous fatty acids from acetic through valeric acid. Coliform bacteria present initially at 105 organisms/dry g in stored waste-corn cultures were not detected after 36 h; coliform bacteria in fresh waste-corn fermentations persisted at 106 organisms/dry g. A silage-like fermentation product resulted which may have use in animal feed formulations.  相似文献   

17.
18.
Fermentation characteristics of Clostridium acetobutylicum B18 were studied in batch experiments with and without pH control. This strain is shown to be potentially useful in simultaneous acetone-butanol-ethanol fermentation-separation systems because of its low acid production. In a pH-uncontrolled batch culture this strain produced mostly solvents, including 15 g/l of butanol. Ethanol production was low. Strain B18 recycled organic acids more efficiently than other strains. In particular, butyric acid was completely recycled when glucose was not limiting. Yield of liquid products (solvents plus organic acids) and carbon recovery in total products (gas plus liquid) were 33.1–36.4 wt% and 90–91 mol%, respectively, for 20–80 g/l of initial glucose. Glucose consumption and the percentage of butanol among solvents were higher at 32°C than at 37°C. Strain B18 required approximately 0.4 g/l of undissociated butyric acid at the onset of solvent production in pH-uncontrolled batch culture. The low undissociated butyric acid requirement enabled this strain to produce 13.8 g/l of butanol at a controlled pH of 6.0.Contribution no. 19998 of the Minnesota Agricultural Experiment Station Correspondence to: C.-H. Park  相似文献   

19.
Zymomonas mobilis, an ethanol-producing bacterium, was immobilized in hydrophilic photo-crosslinked resin gels to form a biocatalyst. The molecular structure of the photo-crosslinkable resin could be modulated so as to minimize a disadvantage of this bacterium—poor-tolerance to salts in molasses. Characteristics of Z. mobilis immobilized by photo-crosslinkable resin gel, such as fermentability, cell growth in gel, the potential of gel materials, diffusion of materials, and salt distribution are discussed. ENTG-3800 photo-crosslinkable resin was selected as the most suitable entrapping material for Z. mobilis, especially in using molasses.  相似文献   

20.
Chen L  Yang X  Raza W  Luo J  Zhang F  Shen Q 《Bioresource technology》2011,102(4):3900-3910
Agro-industrial wastes of cattle dung, vinegar-production residue and rice straw were solid-state fermented by inoculation with Trichoderma harzianum SQR-T037 (SQR-T037) for production of bioorganic fertilizers containing SQR-T037 and 6-pentyl-α-pyrone (6PAP) to control Fusarium wilt of cucumber in a continuously cropped soil. Fermentation days, temperature, inoculum and vinegar-production residue demonstrated significant effects on the SQR-T037 biomass and the yield of 6PAP, based on fractional factorial design. Three optimum conditions for producing the maximum SQR-T037 biomass and 6PAP yield were predicted by central composite design and validated. Bioorganic fertilizer containing 8.46 log10 ITS copies g−1 dry weight of SQR-T037 and 1291.73 mg kg−1 dry weight of 6PAP, and having the highest (p < 0.05) biocontrol efficacy, was achieved at 36.7 fermentation days, 25.9 °C temperature, 7.6% inoculum content, 41.0% vinegar-production residue, 20.0% rice straw and 39.0% cattle dung. This is a way to offer a high value-added use for agro-industrial wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号