首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the mechnism by which quercetin enhances the rate of tension development in skinned muscle fibers, effects on calcium release from longitudinal tubule-derived SR (LSR) after phosphate-supported calcium uptake were examined. In all studies, 100 μM quercetin (which inhibits initial calcium uptake velocity 85%) was added at or shortly after the time calcium content reached a maximum at various extravesicular Ca2+ concentrations (Cao). At moderate Cao (0.2–1.0 μM). where spontaneous calcium release rate depended on Cao, quercetin caused a marked stimulation of calcium release. This was accompanied by a 60% reduction in calcium influx and a 30-fold increase in calcium efflux. Thus, the previously reported quercetin-induced increase in the rate of tension development by skinned muscle fibers may result, at least in part, from sensitization of Ca2+-triggered calcium release to lower Cao.  相似文献   

2.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

3.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

4.
The active uptake and efflux of Ca2+ from suspensions of vesicles from heavy rabbit muscle sarcoplasmic reticulum have been examined using the antipyrylazo III dye method in the presence of various nucleotide triphosphate substrates to support active Ca2+ accumulation. On addition of ATP, Ca2+ is rapidly accumulated and maintained at high internal concentrations until the substrate for pump protein is exhausted. Ca2+-induced Ca2+ release which is inhibited by ruthenium red can be demonstrated. The kinetics of Ca2+ release via these channels is different from the Ca2+ efflux observed after substrate exhaustion. This rate was found to be dependent on the type of nucleotide triphosphate, decreasing in the order ATP greater than GTP greater than CTP greater than ITP UTP. It is suggested that different conformations of the Ca2+ pump protein induced by the different substrates may result in the creation of pathways for the facilitated diffusion of Ca2+.  相似文献   

5.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

6.
Iron administration results in the development of oxidative stress in skeletal muscles, as evidenced by increases in amounts of lipid oxidation fluorescent end products, decreases in vitamin E concentration, and inhibition of calcium transport by sarcoplasmic reticulum. Exhaustive physical loading or hyperoxia, or their combination, does not lead to apparent modification in calcium transport by sarcoplasmic reticulum in skeletal muscle homogenates. However, physical loading or hyperoxia does in fact induce oxidative stress since they magnify the effect of iron loading on the inhibition of calcium transport.  相似文献   

7.
We have isolated two proteolipids from rabbit skeletal muscle sarcoplasmic reticulum by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. One, PL-II, is identical to the proteolipid previously obtained by others using organic solvent extraction. The other, PL-I, has an amino acid composition very similar to those of proteolipids we previously isolated from canine cardiac SR and lamb kidney (Na,K)-ATPase.  相似文献   

8.
The modulation of the calcium release channel (CRC) by protein kinases and phosphatases was studied. For this purpose, we have developed a microsyringe applicator to achieve sequential and multiple treatments with highly purified kinases and phosphatases applied directly at the bilayer surface. Terminal cisternae vesicles of sarcoplasmic reticulum from rabbit fast twitch skeletal muscle were fused to planar lipid bilayers, and single-channel currents were measured at zero holding potential, at 0.15 microM free Ca2+, +/- 0.5 mM ATP and +/- 2.6 mM free Mg2+. Sequential dephosphorylation and rephosphorylation rendered the CRC sensitive and insensitive to block by Mg2+, respectively. Channel recovery from Mg2+ block was obtained by exogenous protein kinase A (PKA) or by Ca2+/calmodulin-dependent protein kinase II (CalPK II). Somewhat different characteristics were observed with the two kinases, suggesting two different states of phosphorylation. Channel block by Mg2+ was restored by dephosphorylation using protein phosphatase 1 (PPT1). Before application of protein kinases or phosphatases, channels were found to be "dephosphorylated" (inactive) in 60% and "phosphorylated" (active) in 40% of 51 single-channel experiments based on the criterion of sensitivity to block by Mg2+. Thus, these two states were interconvertable by treatment with exogenously added protein kinases and phosphatases. Endogenous Ca2+/calmodulin-dependent protein kinase (end CalPK) had an opposite action to exogenous CalPK II. Previously, dephosphorylated channels using PPT (Mg2+ absent) were blocked in the closed state by action of endogenous CalPK. This block was removed to normal activity by the action of either PPT or by exogenous CalPK II. Our findings are consistent with a physiological role for phosphorylation/dephosphorylation in the modulation of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. A corollary of our studies is that only the phosphorylated channel is active under physiological conditions (mM Mg2+). Our studies suggest that phosphorylation can be at more than one site and, depending on the site, can have different functional consequences on the CRC.  相似文献   

9.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties.  相似文献   

10.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

11.
Increases in protein kinase-catalyzed phosphorylation of a 22 000 dalton protein correlated closely with increases in phosphate-facilitated calcium transport measured concurrently in canine cardiac sarcoplasmic reticulum under similar conditions in the presence of varying concentrations of bovine cardiac protein kinase. A correlation coefficient of 0.93 and a P value of < 0.001 were obtained. Protein kinase-catalyzed phosphorylation of the 22 000 dalton microsomal protein may mediate the abbreviation of systole seen in the mammalian heart in response to inotropic agents like catecholamines.  相似文献   

12.
13.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

14.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

15.
Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle   总被引:7,自引:0,他引:7  
J Chevallier  R A Butow 《Biochemistry》1971,10(14):2733-2737
  相似文献   

16.
Low concentrations of fatty acids inhibited initial Ca uptake by sarcoplasmic reticulum vesicles, the extent of inhibition varying with chain length and unsaturation in a series of C14–C20 fatty acids. Oleic acid was a more potent inhibitor of initial Ca uptake than stearic acid at 25°C, whereas at 5°C there was less difference between the inhibitory effects of low concentrations of these fatty acids. When the fatty acids were added later, during the phase of spontaneous Ca release that follows Ca uptake in reactions carried out at 25°C, 1–4 μM oleic and stearic acids caused Ca content to increase. This effect was due to marked inhibition of Ca efflux and slight stimulation of Ca influx. At concentrations of >4 μM, both fatty acids inhibited the Ca influx that occurs during spontaneous Ca release; in the case of oleic acid, this inhibition resembled that of initial Ca uptake at 5°C. The different effects of fatty acids at various times during Ca uptake reactions may be explained in part if alterations in the physical state of the membranes occur during the transition from the phase of initial Ca uptake to that of spontaneous Ca release.  相似文献   

17.
Membrane vesicles from sarcoplasmic reticulum of rabbit skeletal muscle were incorporated into a bilayer lipid membrane. With this system, single current fluctuation was observed in the presence of 50 mM Ba-gluconate. This channel activity was observed only in vesicles from terminal cisternae. The single channel conductance was 14.1 pS, and the channel state was almost wholly open. The open-close transition of the channel obeyed simple two-state kinetics and was voltage-independent. The ionic selectivity was also studied, and the channel showed no selectivity among Ba, Ca, Mn, and Mg. On the other hand, it was less permeable to Cs than to Ba. Based on these results, the relation of the Ca channel to excitation-contraction coupling is discussed.  相似文献   

18.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

19.
To obtain a comprehensive understanding of proteins involved in excitation–contraction coupling, a catalog of proteins from sarcoplasmic reticulum (SR) membrane fractions of New Zealand white rabbit skeletal muscle was analyzed by an optimized shotgun proteomic method. Light and heavy SR membrane fractions were obtained by nonlinear sucrose gradient centrifugation and separated by 1DE followed by a highly reproducible, automated LC‐MS/MS on the hybrid linear ion trap (LTQ) Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 483 proteins were identified from both of the two independent SR preparations. Proteins involved in calcium release unit complex, including ryanodine receptor 1, dihydropyridine receptor, calmodulin, triadin, junctin, and calsequestrin, were all detected, which offered validation for this protein identification method. Rigorous bioinformatics analysis was performed. Protein pI value, molecular weight range, hydrophobicity index, and transmembrane region were calculated using bioinformatics softwares. Eighty‐three proteins were classified as hydrophobic proteins and 175 proteins were recognized as membrane proteins. Based on the proteomic analysis results, we found as the first time that not only transverse tubule but also mitochondrion physically connected to SR. The complete mapping of these proteomes may help in the elucidation of the process of excitation–contraction coupling and excitation–metabolism coupling.  相似文献   

20.
Calcium release from sarcoplasmic reticulum vesicles presumably derived from longitudinal tubules (LSR) and terminal cisternae (HSR) of rabbit skeletal muscle was investigated by dual wavelength spectrophotometry using the calcium-indicator antipyrylazo III. In 120 mM KCl, 5 mM MgCl2, 30 microM, CaCl2, 50 microM MgATP, 100 microM antipyrylazo III, 40 mM histidine (pH 6.8, 25 degrees C), LSR and HSR sequestered approx. 115 nmol calcium/mg, and then spontaneously released calcium. Analysis of ATP hydrolysis and phosphoenzyme level during LSR and HSR calcium sequestration indicated that this calcium release process was passive, occurring in the virtual absence of ATP and phosphoenzyme. Moreover, subsequent addition of ATP reinitiated the calcium sequestration-release sequence. Calcium release by HSR was more than 4-times faster than that by LSR. Analysis of the calcium release phase demonstrated a biexponential decay for both LSR (0.10 and 0.63 min-1) and HSR (0.26 and 1.65 min-1), suggestive of heterogeneity within each fraction. Replacement of 120 mM KCl with either 120 mM choline chloride, 240 mM sucrose, or H2O reduced maximal calcium sequestration by LSR, but had less effect on LSR calcium release rate constants. In the case of HSR, these changes in the ionic composition of the medium drastically reduced calcium release rate constants with little effect on calcium content. These marked differences between LSR and HSR are consistent with the hypothesis that the calcium permeability of the terminal cisternae is greater and more sensitive to the ionic environment than is that of the longitudinal tubules of sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号