首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Comparative analysis of the indices of plant growth and mesostructure of the photosynthetic apparatus was carried out with ten wheat (Triticum L.) species of various origins. Wheat alloploid forms (tetra- and hexaploids with the chromosome numbers of 28 and 42) exceeded the diploid forms (the chromosome number of 14) 2.3–2.4-fold by their absolute growth rate (AGR). As a result, the alloploid species developed a larger assimilation area; this change involved the internal reorganization of leaf phototrophic tissues and an increase in the cumulative internal assimilation area. In addition, the alloploid species manifested a higher correlation between the surface areas of cell and chloroplast membranes caused by a decrease in the cell number per the unit leaf area, a relative increase of the number of composite multifaveolate cells, a considerable expansion (in volume and surface area) of mesophyll cells, and an increase in chloroplast size and numbers. The decreased ratio between the characteristics of the cell membrane and chloroplast envelope presumes that CO2 diffusion via cell and chloroplast membranes in the leaves was better balanced in the alloploid wheat species than in the diploid forms. All wheat species did not notably differ in their plastid–cytoplasm ratio (cell volume corresponding to one chloroplast and cell surface area per one chloroplast) and the ratio of surface area of cells to cell volume. The discriminant analysis revealed the indices of leaf growth and mesophyll structure instrumental in distinguishing between the diploid and alloploid species: leaf area, AGR, and cell size and number. The change in the latter indices optimized the structure of leaf phototrophic tissues in tetraploid and hexaploid species; as a result, the internal assimilation area was expanded and, consequently, leaf CO2 conductance was increased.  相似文献   

2.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

3.
Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2?3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.  相似文献   

4.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   

5.
Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.  相似文献   

6.
Increasing photosynthetic photon flux density (PPFD) received during development from 5.5 to 31.2 mol m-2 d-1 resulted in greater leaf and mesophyll cell surface areas in cotton (Gossypium hirsutum L.). The relationships between the amounts of these surface areas and potential CO2 assimilation by these leaves were evaluated. Leaf area (epidermal surface area of one side of a leaf), mesophyll cell surface area, and net rate of CO2 uptake (Pn) were measured from the time leaves first unfolded until P., was substantially reduced. At the higher PPFD, leaf and mesophyll surface areas increased more rapidly during expansion, and Pn per unit leaf area was greater than at the lower PPFD. Although leaves at the higher PPFD reached the maximum P., per unit mesophyll cell surface area 4 to 5 days earlier than leaves at the lower PPFD, the maxima for these P., were similar. Leaves grown at the higher PPFD had the potential to assimilate 2.2, 3.5, or 5.8 times the amount of CO2 as leaves from the lower PPFD when P., was expressed per unit mesophyll surface, per unit leaf surface, or per whole leaf, respectively. Greater and earlier development of both P., and mesophyll cell surface area at higher PPFD apparently had a compounding effect on the potential for carbon assimilation by a leaf.  相似文献   

7.
This study examines interrelationships between eight leaf attributes (specific leaf mass, area, dry mass, lamina thickness, mesophyll cell number per cm2, mesophyll cell volume, chloroplast volume, and number of chloroplasts per mesophyll cell) in field-grown plants of 94 species from the Eastern Pamir Mountains, at elevations between 3800 and 4750 m. Unlike most other mountain areas, the Eastern Pamirs, Karakorum system, Tadjikistan provide localities where low temperatures and radiation combine with moisture stress at high altitudes. For all the attributes measured, significant differences were found between plants with different mesophyll types. Leaves with dorsiventral palisade structure (dorsal palisade, ventral spongy mesophyll cells) had thicker leaves with larger but fewer mesophyll cells, containing more and larger chloroplasts. These differences in mesophyll type are reflected in differences in the total surface of mesophyll cells per unit leaf area ( A mes/ A ) or volume ( A mes/ V ). Plants with isopalisade leaf structure (palisade cells under both dorsal and ventral surfaces) are more commonly xerophytes and their increased values of A mes/ A and A mes/ V decrease CO2 mesophyll resistance, which is an important adaptation to drought. Path analysis shows the critical importance of mesophyll cell volume in leading to the covariance between the different leaf attributes and hence to specific leaf mass (SLM), even though mesophyll cell volume is not itself strongly correlated with SLM. This is because mesophyll cell volume increases SLM through its effects on leaf thickness and chloroplast number per cell, but decreases SLM through its negative effect on mesophyll cell density.  相似文献   

8.
Variation in Mesophyll Cell Number and Size in Wheat Leaves   总被引:1,自引:0,他引:1  
The numbers of mesophyll cells in wheat leaves were determinedin a variety of wheat species differing in ploidy level andin leaves from different positions on the wheat plant. Leafsize and mesophyll cell number are linearly related in bothcases but differences were observed in mesophyll cell numberper unit leaf area with changing leaf size. Where changes incell size are caused either by nuclear ploidy or leaf position,differences in mesophyll cell number per unit leaf are negativelycorrelated with mesophyll cell plan area. The decrease in cellsize with increasing leaf position also results in a greaternumber of chloroplasts per unit leaf area. These results arediscussed in relation to anatomical variation of the wheat leaf. Mesophyll cell, cell numbers, leaf size, Triticum  相似文献   

9.
SASAHARA  T. 《Annals of botany》1982,50(3):379-383
Numbers of mesophyll cells per unit leaf area decreased progressivelyfrom an upper leaf with a width of 3 cm towards the lower leaves.Enlargement of mesophyll cell size with leaf order accountedfor an increase or maintenance of mesophyll cell surface areaper unit leaf area. Increase of photosynthetic rates was correlatedwith increases of mesophyll cell surface area and nitrogen contentper unit leaf area. Therefore, in spite of an increase in cellsurface area to volume ratio with increase of mesophyll cellsize, it appears that increase of mesophyll cell surface areaand nitrogen content per unit leaf area enables a high rateof photosynthesis to be maintained. Brassica, photosynthesis, mesophyll surface area, nitrogen content, cell size, mesophyll resistance, leaf age  相似文献   

10.
The use of open-top chambers (OTCs) installed in natural plant cover is one of the approaches to study plant responses to climate change. Three OTCs made from polyethylene film were installed on a herbgrass meadow in the subzone of the southern taiga before the beginning of the growing season. A significant increase in the average daily temperature values (by 0.5°C) and the relative humidity (by 10%) compared to control conditions was observed inside the chambers. Plant height, leaf parameters, and the pigments content were studied for six species of meadow plants during the growing season in two variants—inside the chamber and outside the chamber (control); more than 20 quantitative parameters of the mesophyll were studied for four of the species. It was found that the differences in microclimatic conditions had no effect on plant height and leaf area. A slight decrease in the thickness and density of the leaves and an increased water content were noted inside the OTCs. In contrast to weak changes in external leaf parameters, the internal leaf structure and the content of photosynthetic pigments varied considerably. Warming caused the reduction of the content of chlorophyll and carotenoids per unit leaf area in the majority of studied species, except for Veronica chamaedrys L., but the ratio of pigment forms did not change. Changes in the pigments content in the leaf were associated with some structural rearrangements in the mesophyll, whose mechanism depended on the functional properties of the species. Increased size of palisade cells and the number of chloroplasts per cell was noted in the ruderal species (R/CSR-strategist) Taraxacum officinale Wigg. s. l.; the reduction of chlorophyll content per leaf area occurred due to the decrease in chlorophyll content per a single chloroplast. Decreased number of cells and chloroplasts per leaf unit area without any changes in their size was marked for the species with S/CSR strategy Alchemilla vulgaris L. s. 1. and V. chamaedrys L. in a chamber, but the content of chlorophyll per a chloroplast increased. An increase in the number of cells and a simultaneous decrease in their size was observed in CR-strategist Cirsium setosum (Willd.) Bess. inside the OTC; the chlorophyll content per chloroplast did not change. It was concluded that the acclimation of plants to short-term climate warming was associated with the restructuring of leaf mesophyll, whose mechanism depended on the functional properties of the species.  相似文献   

11.
Pyke, K. A. and Leech, R. M. 1987. Cellular levels of ribulose1,5 bisphosphate carboxylase and chloroplast compartment sizein wheat mesophyll cells.—J. exp. Bot. 38: 1949–1956. The amount of the photosynthetic enzyme ribulose 1,5 bisphosphatecarboxylase (RUBISCO),as determined in mesophyll cells in primarywheat leaves was related to the size of the chloroplast compartmentwithin the cell for wheat species of three ploidy levels. Asimilar comparison was made for several genotypes of the hexaploidbreadwheat Triticum aestivum. Estimation of total chloroplastvolume per mesophyll cell was made assuming chloroplasts tobe oblate spheroid in shape. A significant correlation was found between the amount of RUBISCOper cell and the total chloroplast volume per cell for diploid,tetraploid and hexaploid wheat species. A significant correlationbetween cellular RUBISCO level and total chloroplast volumeper cell was also observed for a range of genotypes of the hexaploidT. aestivum but these genotypes of T. aestivutn accumulate agreater amount of RUBISCO per unit chloroplast volume than doany other wheat species. For these genotypes of T. aestivumthe stromal concentration of RUBISCO was estimated at 0·5mol m–3 with a ribulose Msphosphate binding site concentrationof 4·0 mol m–3. These results are discussed with respect to a gene dosage hypothesisto explain the accumulation of RUBISCO in leaf mesophyll cells. Key words: Ribulose, bisphosphate carboxylase, wheat chloroplasts, mesophyll cells  相似文献   

12.
Two genomic variants of a chickpea (Cicer arietinum L.) parental line have been developed which exhibit gigas characters. The two genotypes were the result of a single-gene mutation (gigas) and induced tetraploidy of a single parental line. The two genotypes plus parental strain were investigated to determine the similarity-of-effect of polyploidy and this single-gene mutation on leaf anatomy and morphology. Leaves consisted of two rows of alternatively arranged leaflets. Both the tetraploid and parental lines had the same mean number of leaflets per leaf while the gigas plants had fewer, but mean total leaf surface area was greater in the gigas plants. Quantitative comparison of mesophyll and vascular tissue and air space volume density (Vv) showed that leaves of the tetraploid plants had the greatest mesophyll cell density (Vvm) and least air space density. Mesophyll cell density was equal in the parental and single-gene mutant while parental leaves had the greatest vascular tissue density. The greater mesophyll cell density values of the polyploid were due to larger mean mesophyll cell size, not to greater cell numbers per unit area. Leaf models based on tissue density and leaflet size showed tetraploid plants had the greatest productivity potential per unit of leaflet surface area. However, if models were based on a whole leaf, gigas plants had the greatest productivity potential since they had larger total leaf area. The effectiveness of using structural models to predict physiological potential in plant tissues will be tested in future studies.  相似文献   

13.
Leaf samples of Mn-deficient and Mn-sufficient (control) ‘Navelate’ orange plants grown in a greenhouse were taken to investigate the effects of Mn deficiency in leaf structure and chloroplast ultrastructure. Total leaf chlorophyll concentration was significantly lower in Mn-deficient plants than in control ones. Entire lamina thickness was not altered due to Mn deficiency. However, Mn deficiency resulted in disorganization of mesophyll cells, mainly of palisade parenchyma cells. The number of mesophyll chloroplasts per cellular area and their length were both affected negatively. The membranous system of chloroplasts was also disorganized. The percentages of starch grains and plastoglobuli per chloroplast of Mn-deficient leaves were significantly greater than those of control leaves.  相似文献   

14.
J. R. Ellis  R. M. Leech 《Planta》1985,165(1):120-125
As part of an investigation into the control of chloroplast replication the number and size of chloroplasts in mesophyll cells was examined in relation to the size of the cells. In first leaves of Triticum aestivum L. and T. monococcum L. the number of chloroplasts in fully expanded mesophyll cells is positively correlated with the plan area of the cells. The linear relationship between chloroplast number per cell and cell plan area is also consistent over a fivefold range of cell size in isogenic diploid and tetraploid T. monococcum. In T. aestivum the chloroplast number per unit cell plan area varies among cells in relation to the size of the chloroplasts. Those cells containing chloroplasts with a relatively small face area have a correspondingly higher density of chloroplasts, and consequently, the total chloroplast area per unit cell plan area is very similar in all the cells. The results indicate that the proportion of the cell surface area covered by chloroplasts is precisely regulated, and that this is achieved during cell development by growth and replication of the chloroplasts.  相似文献   

15.
In situ and light-saturated net photosynthetic rates per unit leaf area were greater in cotton (Gossypium hirsutum L.) plants grown in pots in the field than in similar plants from a phytotron growth chamber. Light-saturated stomatal resistances did not differ in leaves of similar age and exposure on field and chamber plants; lower photosynthetic rates in chamber leaves were associated with greater mesophyll resistance. Differences in net photosynthetic rates were related to differences in leaf thickness. When the photosynthetic rates were expressed per unit of mesophyll volume or per unit chlorophyll differences between field and chamber plants were much less than when rates were expressed per unit leaf area. Characterization of the chloroplast lamellar proteins showed that the field leaves had smaller photosynthetic units than the chamber leaves. Since the field leaves also contained more chlorophyll per unit area, this resulted in a much larger number of photosynthetic units per unit area in the field leaves.  相似文献   

16.
A method was developed for determining the surface area and volume of rice mesophyll cells of elaborate configuration. The method was employed to calculate these indices in several types of rice mesophyll cells found in seventy samples (53 species) of diverse origin coming from Japan, China, Korea, India, Nepal, Australia, France, Italy, Uzbekistan, Afghanistan, and Krasnodar and Primorskii regions. The cultivars of diverse geographic origin varied in cell shape and size due to the number, size, and arrangement of chloroplasts. When the volumes and surface areas of leaf mesophyll cells were compared using the method reported herein and a simple empirical model of the cell as a single ellipsoid, the two methods produced relatively similar data for cell volume; however, the surface area calculated by the former method was about two times larger than in the latter case. The method described in this paper allows for accurate calculations of the volume and surface area of rice mesophyll cells when data are available on the cell shape and linear dimensions and the number of chloroplasts per cell.  相似文献   

17.
Plants of a single genotype of wild strawberry, Fragaria virginiana Duchesne, were grown with or without fertilizer in high (406 microeinsteins per square meter per second) and low (80 microeinsteins per square meter per second) light. High-light leaves were thicker than low-light leaves and had greater development of the mesophyll. Within a light level, high-nutrient leaves were thicker, but the proportions of leaf tissues did not change with nutrient level. Maximum net CO2 exchange rate and leaf size were greatest in high-light, high-nutrient leaves and lowest in high-light, low-nutrient leaves. Changes in mesophyll cell volume largely accounted for differences in CO2 exchange rate in low-light leaves, but not in high-light leaves.

Leaf size in these experiments was apparently determined by nutrient and carbon supply. This may explain the observation that the largest leaves produced by wild strawberries in the field occur in high-light, mesic habitats, rather than in shady habitats.

  相似文献   

18.
Leaf senescence is a genetically regulated stage in the plant life cycle leading to death. Ultrastructural analysis of a particular region of the leaf and even of a particular mesophyll cell can give a clear picture of the time development of the process. In this study we found relations between changes in mesophyll cell ultrastructure and pigment concentration in every region of the leaf during leaf senescence in maize and barley. Our observations demonstrated that each mesophyll cell undergoes a similar senescence sequence of events: a) chromatin condensation, b) degradation of thylakoid membranes and an increase in the number of plastoglobules, c) damage to internal mitochondrial membrane and chloroplast destruction. Degradation of chloroplast structure is not fully correlated with changes in photosynthetic pigment content; chlorophyll and carotenoid content remained at a rather high level in the final stage of chloroplast destruction. We also compared the dynamics of leaf senescence between maize and barley. We showed that changes to the mesophyll cells do not occur at the same time in different parts of the leaf. The senescence damage begins at the base and moves to the top of the leaf. The dynamics of mesophyll cell senescence is different in leaves of both analyzed plant species; in the initial stages, the process was faster in barley whereas in the later stages the process occurred more quickly in maize. At the final stage, the oldest barley mesophyll cells were more damaged than maize cells of the same age.  相似文献   

19.
Rates of net CO2 uptake were examined in developing leaves of Hydrocotyle bonariensis. Leaves that developed under high photosynthetically active radiation (48 mol m-2 day-1 PAR) were smaller, thicker, and reached maximum size sooner than did leaves that developed under low PAR (4.8 mol m-2 day-1). Maximum net CO2 uptake rates were reached after 5 to 6 days expansion for both the low and the high PAR leaves. Leaves grown at high PAR had higher maximum photosynthetic rates and a higher PAR required for light saturation but showed a more rapid decline in rate with age than did low PAR leaves. To assess the basis for the difference observed in photosynthetic rates, CO2 diffusion conductances and the mesophyll surface available for CO2 absorption were examined for mature leaves. Stomatal conductance was the largest conductance in all treatments and did not vary appreciably with growth PAR. Mesophyll conductance progressively increased with growth PAR (up to 48 mol m-2 day-1) as did the mesophyll surface area per unit leaf area, but the cellular conductance exhibited most of its increase at low PAR (up to 4.8 mol m-2 day-1).  相似文献   

20.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号