首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.  相似文献   

3.
Cho KO  Chern J  Izaddoost S  Choi KW 《Cell》2000,103(2):331-342
The Drosophila eye disc is a sac of single layer epithelium with two opposing sides, the peripodial membrane (PM) and the disc proper (DP). Retinal morphogenesis is organized by Notch signaling at the dorsoventral (DV) boundary in the DP. Functions of the PM in coordinating growth and patterning of the DP are unknown. We show that the secreted proteins, Hedgehog, Wingless, and Decapentaplegic, are expressed in the PM, yet they control DP expression of Notch ligands, Delta and Serrate. Peripodial clones expressing Hedgehog induce Serrate in the DP while loss of peripodial Hedgehog disrupts disc growth. Furthermore, PM cells extend cellular processes to the DP. Therefore, peripodial signaling is critical for eye pattern formation and may be mediated by peripodial processes.  相似文献   

4.
Retinoic acid is clearly important for the development of the heart. In this paper, we provide evidence that retinoic acid is essential for multiple aspects of cardiogenesis in Xenopus by examining embryos that have been exposed to retinoic acid receptor antagonists. Early in cardiogenesis, retinoic acid alters the expression of key genes in the lateral plate mesoderm including Nkx2.5 and HAND1, indicating that early patterning of the lateral plate mesoderm is, in part, controlled by retinoic acid. We found that, in Xenopus, the transition of the heart from a sheet of cells to a tube required retinoic acid signaling. The requirement for retinoic acid signaling was determined to take place during a narrow window of time between embryonic stages 14 and 18, well before heart tube closure. At the highest doses used, the lateral fields of myocardium fail to fuse, intermediate doses lead to a fusion of the two sides but failure to form a tube, and embryos exposed to lower concentrations of antagonist form a heart tube that failed to complete all the landmark changes that characterize looping. The myocardial phenotypes observed when exposed to the retinoic acid antagonist resemble the myocardium from earlier stages of cardiogenesis, although precocious expression of cardiac differentiation markers was not seen. The morphology of individual cells within the myocardium appeared immature, closely resembling the shape and size of cells at earlier stages of development. However, the failures in morphogenesis are not merely a slowing of development because, even when allowed to develop through stage 40, the heart tubes did not close when embryos were exposed to high levels of antagonist. Indeed, some aspects of left-right asymmetry also remained even in hearts that never formed a tube. These results demonstrate that components of the retinoic acid signaling pathway are necessary for the progression of cardiac morphogenesis in Xenopus.  相似文献   

5.
The mechanisms that subdivide the endoderm into the discrete primordia that give rise to organs such as the pancreas and liver are not well understood. However, it is known that retinoic acid (RA) signaling is critical for regionalization of the vertebrate embryo: when RA signaling is either prevented or augmented, anteroposterior (AP) patterning of the CNS and mesoderm is altered and major developmental defects occur. We have investigated the role of RA signaling in regionalization of the zebrafish endoderm. Using a mutant that prevents RA synthesis and an antagonist of the RA receptors, we show that specification of both the pancreas and liver requires RA signaling. By contrast, RA signaling is not required for the formation of the endodermal germ layer or for differentiation of other endodermal organs. Timed antagonist and RA treatments show that the RA-dependent step in pancreatic specification occurs at the end of gastrulation, significantly earlier than the expression of known markers of pancreatic progenitors. In addition to being required for pancreatic specification, RA has the capacity to transfate anterior endoderm to a pancreatic fate.  相似文献   

6.
The cellular mosaic of the mammalian organ of Corti represents one of the most highly ordered structures in any vertebrate system. A single row of inner hair cells and three or four rows of outer hair cells extend along the basal-to-apical axis of the cochlea. The factors that play a role in the development of specific cell types within the cochlea are largely unknown; however, the results of previous studies have strongly suggested that retinoic acid plays a role in the development of cells as hair cells. To determine whether cochlear progenitor cells can respond directly to retinoic acid, the expression patterns for each of the RAR and RXR receptors within the embryonic cochlear duct were determined by in situ hybridization. Results indicate that RARalpha, RXRalpha, and RXRgamma are initially expressed throughout the cochlear duct. As development continues, the expression of each receptor becomes more intense in cells that will develop as hair cells. At the same time, receptor expression is down-regulated in cells that will develop as nonsensory cell types. To determine the effects of retinoic acid signaling during the development of the organ of Corti, activation of retinoid receptors was blocked in cultures of the embryonic cochlea through receptor-specific antagonism or inhibition of retinoic acid synthesis. Results indicate that inhibition of retinoic acid signaling induces a significant decrease in the number of cells that develop as hair cells and a disruption in the development of the organ of Corti. These results demonstrate that cells within the developing cochlea can respond to retinoic acid and that signaling by retinoic acid is necessary for the normal development of the organ of Corti.  相似文献   

7.
Positional information in the dorsoventral axis of the Drosophila embryo is encoded by a BMP activity gradient formed by synergistic signaling between the BMP family members Decapentaplegic (DPP) and Screw (SCW). short gastrulation (sog), which is functionally homologous to Xenopus Chordin, is expressed in the ventrolateral regions of the embryo and has been shown to act as a local antagonist of BMP signaling. Here we demonstrate that SOG has a second function, which is to promote BMP signaling on the dorsal side of the embryo. We show that a weak, homozygous-viable sog mutant is enhanced to lethality by reduction in the activities of the Smad family members Mad or Medea, and that the lethality is caused by defects in the molecular specification and subsequent cellular differentiation of the dorsal-most cell type, the amnioserosa. While previous data had suggested that the negative function of SOG is directed against SCW, we present data that suggests that the positive activity of SOG is directed towards DPP. We demonstrate that Chordin shares the same apparent ligand specificity as does SOG, preferentially inhibiting SCW but not DPP activity. However, in Drosophila assays Chordin does not have the same capacity to elevate BMP signaling as does SOG, identifying a functional difference in the otherwise well conserved process of dorsoventral pattern formation in arthropods and chordates.  相似文献   

8.
Functions of retinoic acid receptors (RARs) in adult CNS have been poorly characterized. Here we investigated potential neuroprotective action of tamibarotene (Am80), an RARα/β agonist available for the treatment of acute promyelocytic leukemia, on midbrain dopaminergic neurons. Am80 protected dopaminergic neurons in rat midbrain slice culture from injury mediated by lipopolysaccharide-activated microglia, without affecting production of nitric oxide, a key mediator of cell injury. The effect of Am80 was mimicked by another RAR agonist, TAC-101, but not by a retinoid X receptor agonist, HX630, and HX630 did not synergize with Am80. We observed neuronal expression of RARα and RARβ in midbrain slice culture and also found that Am80 increased tissue level of brain-derived neurotrophic factor (BDNF) mRNA. Exogenous BDNF prevented dopaminergic neurodegeneration, and the neuroprotective effect of Am80 was suppressed by a TrkB inhibitor, K252a, or by anti-BDNF neutralizing antibody. These results reveal a novel action of RARs mediated by enhancement of BDNF expression. Finally, oral administration of Am80 prevented dopaminergic cell loss in the substantia nigra induced by local injection of lipopolysaccharide in mice, indicating that RARs are a promising target of therapeutics for neurodegenerative disorders.  相似文献   

9.
In order to clarify the function of the Djbmp (Dugesia japonica bone morphogenetic protein) gene in planarian body patterning, we carried out knockdown of this gene by RNA interference. When the planarians were treated with double-stranded RNA of Djbmp, a bulge formed on the dorsal side, with a dent in the middle of the bulge, and the body surface inside the dent was smoothened and less pigmented. In situ hybridization of the DjIFb gene, which is expressed in the body margin, revealed that the additional body margin was formed ectopically at the region surrounding the dent. The Djbmp-knockdown planarians often had a pair of incomplete nerve cords in the dorsal side, in addition to the original pair of ventral nerve cords. Taken together, we concluded that the Djbmp-knockdown induced formation of an ectopic ventral side, suggesting that Djbmp is required for the dorso-ventral body patterning in the planarian.  相似文献   

10.
We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.  相似文献   

11.
Heparan sulfate is required for bone morphogenetic protein-7 signaling   总被引:8,自引:0,他引:8  
Although genetic studies have suggested that heparan sulfate (HS) is involved in bone morphogenetic protein (BMP)-mediated embryonic morphogenesis, it is unclear whether HS is directly involved in BMP-mediated signaling. Here, we investigate the involvement of HS in BMP-7 signaling. We show that HS and heparin chains specifically bind to BMP-7. Digestion of cell-surface HS with heparitinase interferes with BMP-7-mediated Smad phosphorylation in ROS 17/2.8 osteoblastic cells. Inhibiting sulfation of cell-surface HS with chlorate also causes interruption of Smad phosphorylation. Addition of exogenous heparin to ROS 17/2.8 cells prevents BMP-7-mediated Smad phosphorylation rather than enhances the BMP-7 signal, suggesting that HS should be anchored on the plasma membrane for BMP signaling. Moreover, BMP-7 binding to ROS 17/2.8 cells is inhibited by chlorate treatment and exogenous application of heparin. These results demonstrate that BMP-7 specifically binds to cell-surface HS and the BMP-7-HS interaction is required for BMP-7 signaling.  相似文献   

12.
The progression of the morphogenetic furrow in the developing Drosophila eye is an early metamorphic, ecdysteroid-dependent event. Although Ecdysone receptor-encoded nuclear receptor isoforms are the only known ecdysteroid receptors, we show that the Ecdysone receptor gene is not required for furrow function. DHR78, which encodes another candidate ecdysteroid receptor, is also not required. In contrast, zinc finger-containing isoforms encoded by the early ecdysone response gene Broad-complex regulate furrow progression and photoreceptor specification. br-encoded Broad-complex subfunctions are required for furrow progression and proper R8 specification, and are antagonized by other subfunctions of Broad-complex. There is a switch from Broad complex Z2 to Z1 zinc-finger isoform expression at the furrow which requires Z2 expression and responds to Hedgehog signals. These results suggest that a novel hormone transduction hierarchy involving an uncharacterized receptor operates in the eye disc.  相似文献   

13.
14.
The Spemann organizer plays a central role in neural induction, patterning of the neuroectoderm and mesoderm, and morphogenetic movements during early embryogenesis. By seeking genes whose expression is activated by the organizer-specific LIM homeobox gene Xlim-1 in Xenopus animal caps, we isolated the receptor tyrosine kinase Xror2. Xror2 is expressed initially in the dorsal marginal zone, then in the notochord and the neuroectoderm posterior to the midbrain-hindbrain boundary. mRNA injection experiments revealed that overexpression of Xror2 inhibits convergent extension of the dorsal mesoderm and neuroectoderm in whole embryos, as well as the elongation of animal caps treated with activin, whereas it does not appear to affect cell differentiation of neural tissue and notochord. Interestingly, mutant constructs in which the kinase domain was point-mutated or deleted (named Xror2-TM) also inhibited convergent extension, and did not counteract the wild-type, suggesting that the ectodomain of Xror2 per se has activities that may be modulated by the intracellular domain. In relation to Wnt signaling for planar cell polarity, we observed: (1) the Frizzled-like domain in the ectodomain is required for the activity of wild-type Xror2 and Xror2-TM; (2) co-expression of Xror2 with Xwnt11, Xfz7, or both, synergistically inhibits convergent extension in embryos; (3) inhibition of elongation by Xror2 in activin-treated animal caps is reversed by co-expression of a dominant negative form of Cdc42 that has been suggested to mediate the planar cell polarity pathway of Wnt; and (4) the ectodomain of Xror2 interacts with Xwnts in co-immunoprecipitation experiments. These results suggest that Xror2 cooperates with Wnts to regulate convergent extension of the axial mesoderm and neuroectoderm by modulating the planar cell polarity pathway of Wnt.  相似文献   

15.
The Daam family of proteins consists of Daam1 and Daam2. Although Daam1 participates in noncanonical Wnt signaling during gastrulation, Daam2 function remains completely uncharacterized. Here we describe the role of Daam2 in canonical Wnt signal transduction during spinal cord development. Loss-of-function studies revealed that Daam2 is required for dorsal progenitor identities and canonical Wnt signaling. These phenotypes are rescued by β-catenin, demonstrating that Daam2 functions in dorsal patterning through the canonical Wnt pathway. Complementary gain-of-function studies demonstrate that Daam2 amplifies Wnt signaling by potentiating ligand activation. Biochemical examination found that Daam2 association with Dvl3 is required for Wnt activity and dorsal patterning. Moreover, Daam2 stabilizes Dvl3/Axin2 binding, resulting in enhanced intracellular assembly of Dvl3/Axin2 complexes. These studies demonstrate that Daam2 modulates the formation of Wnt receptor complexes, revealing new insight into the functional diversity of Daam proteins and how canonical Wnt signaling contributes to pattern formation in the developing spinal cord.  相似文献   

16.
The role of Notch signaling during skin development was analyzed using Msx2-Cre to create mosaic loss-of-function alleles with precise temporal and spatial resolution. We find that gamma-secretase is not involved in skin patterning or cell fate acquisition within the hair follicle. In its absence, however, inner root sheath cells fail to maintain their fates and by the end of the first growth phase, the epidermal differentiation program is activated in outer root sheath cells. This results in complete conversion of hair follicles to epidermal cysts that bears a striking resemblance to Nevus Comedonicus. Sebaceous glands also fail to form in gamma-secretase-deficient mice. Importantly, mice with compound loss of Notch genes in their skin phenocopy loss of gamma-secretase in all three lineages, demonstrating that Notch proteolysis accounts for the major signaling function of this enzyme in this organ and that both autonomous and nonautonomous Notch-dependent signals are involved.  相似文献   

17.
Wnt signaling functions in axis formation and morphogenesis in various animals and organs. Here we report that Wnt signaling is required for proper brain patterning during planarian brain regeneration. We showed here that one of the Wnt homologues in the planarian Dugesia japonica, DjwntA, was expressed in the posterior region of the brain. When DjwntA-knockdown planarians were produced by RNAi, they could regenerate their heads at the anterior ends of the fragments, but formed ectopic eyes with irregular posterior lateral branches and brain expansion. This suggests that the Wnt signal may be involved in antero-posterior (A-P) patterning of the planarian brain, as in vertebrates. We also investigated the relationship between the DjwntA and nou-darake/FGFR signal systems, as knockdown planarians of these genes showed similar phenotypes. Double-knockdown planarians of these genes did not show any synergistic effects, suggesting that the two signal systems function independently in the process of brain regeneration, which accords with the fact that nou-darake was expressed earlier than DjwntA during brain regeneration. These observations suggest that the nou-darake/FGFR signal may be involved in brain rudiment formation during the early stage of head regeneration, and subsequently the DjwntA signal may function in A-P patterning of the brain rudiment.  相似文献   

18.
Pai LM  Barcelo G  Schüpbach T 《Cell》2000,103(1):51-61
During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.  相似文献   

19.
20.
Retinoic acid (RA) is a metabolite of vitamin A and has important roles in development, differentiation, and reproduction. Activin has been shown to regulate the RA pathway and affect granulosa cell (GC) proliferation, suggesting that RA is important for early follicle development. However, little is known about the effects of RA on GC functions, particularly steroidogenesis, during the early follicle stage. The aim of this study was to investigate the effects of all-trans-RA (atRA) on progesterone production in immature rat GCs cultured without gonadotropin. Our results demonstrated that atRA enhanced progesterone production by upregulating the levels of steroidogenic acute regulatory protein (StAR) and cytochrome P450scc (Cyp11a1) mRNAs, but not 3β-hydroxysteroid dehydrogenase mRNA in immature rat GCs. Additionally, analysis of the mechanisms through which atRA upregulated StAR and Cyp11a1 mRNAs revealed that atRA enhanced intracellular cAMP accumulation and phosphorylation of cAMP response-element binding protein (CREB). In addition, H-89, an inhibitor of protein kinase A (PKA), abolished the stimulatory effects of atRA, indicating that atRA enhanced progesterone synthesis through cAMP/PKA signaling. In conclusion, our data demonstrated that atRA has a crucial role in progesterone synthesis in rat GCs during the early follicle stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号