首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inverse relationship between the number of stomata on a leaf surface and the atmospheric carbon dioxide concentration ([CO2]) in which the leaf developed allows plants to optimise water-use efficiency (WUE), but it also permits the use of fossil plants as proxies of palaeoatmospheric [CO2]. The ancient conifer family Araucariaceae is often represented in fossil floras and may act as a suitable proxy of palaeo-[CO2], yet little is known regarding the stomatal index (SI) responses of extant Araucariaceae to [CO2]. Four Araucaria species (Araucaria columnaris, A. heterophylla, A. angustifolia and A. bidwillii) and Agathis australis displayed no significant relationship in SI to [CO2] below current ambient levels (~380 ppm). However, representatives of the three extant genera within the Araucariaceae (A. bidwillii, A. australis and Wollemia nobilis) all exhibited significant reductions in SI when grown in atmospheres of elevated [CO2] (1,500 ppm). Stomatal conductance was reduced and WUE increased when grown under elevated [CO2]. Stomatal pore length did not increase alongside reduced stomatal density (SD) and SI in the three araucariacean conifers when grown at elevated [CO2]. These pronounced SD and SI reductions occur at higher [CO2] levels than in other species with more recent evolutionary origins, and may reflect an evolutionary legacy of the Araucariaceae in the high [CO2] world of the Mesozoic Era. Araucariacean conifers may therefore be suitable stomatal proxies of palaeo-[CO2] during periods of “greenhouse” climates and high [CO2] in the Earth’s history.  相似文献   

2.
Involvement of extracellular Ca2+ in stomatal movement through the regulation of water channels was investigated in broad bean (Vicia faba L.). Leaf peels were first incubated to open stomata, and then transferred to buffers in the presence of different CaCl2 concentrations. Stomatal status was observed under magnification and stomatal aperture (pore width/length) was measured. Stomatal closure was significantly induced and aperture oscillation occurred at lower extracellular concentrations of calcium ([Ca2+]ext), while at higher concentrations, no significant change in stomatal aperture was observed, which was similar to the response recorded with HgCl2. Lower [Ca2+]ext-induced stomatal closure could be reversed using depolarizing buffer. It is suggested that lower [Ca2+]ext regulates water channels through an indirect way and at higher concentrations, extracellular Ca2+ is involved in regulating stomatal aperture by directly influencing water channels to retard aperture change.  相似文献   

3.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

4.
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO2]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G s) to instantaneous changes in external [CO2] (C a) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO2] (1,500 ppm) and sub-ambient [O2] (13.0 %) compared to control conditions (380 ppm CO2, 20.9 % O2). We found that active control of stomatal aperture to [CO2] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C a were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO2]. The relationship between the degree of stomatal aperture control to C a above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO2] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.  相似文献   

5.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

6.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

7.
To characterise the stomata of six temperate deciduous tree species, sets of stomatal sensitivities to all the most important environmental factors were measured. To compare the importance of abscisic acid (ABA) in the different stomatal responses, the effect of exogenous ABA on all the stomatal sensitivities was determined.Almost all the stomatal sensitivities: the sensitivity to a decrease in leaf water potential, air humidity, CO2 concentration ([CO2]) and light intensity, and to an increase in [CO2] and light intensity were the highest in the slow-growing species, and the lowest in the fast-growing species. Drought increased the sensitivity to the environmental changes that induce a decrease in the stomatal conductance, and decreased the sensitivity to the changes that induce an increase in this conductance. The sensitivities of the slow-growers were most strongly affected by drought and ABA. Therefore the success of the slow-growers in their ecological niches can be based on the highly sensitive and strictly regulated responses of their stomata. The fast-growers had the highest sensitivity to an increase in leaf water potential and this sensitivity was sharply reduced by drought and ABA. Thus, the dominance of the trees in riparian areas can be based on the ability of their stomata to quickly reach high conductance in well-watered conditions and to efficiently decrease this rate during drought.Stomatal sensitivities to the hydraulic environmental factors (water potentials in plant and air) had higher values in well-watered trees and a more pronounced response to drought than the sensitivities to the photosynthetic environmental factors ([CO2] and light intensity). Thus, the hydraulic factors most likely prevail over the photosynthetic factors in determining stomatal conductance in these species.In response to exogenous ABA, the rates of stomatal closure, following a decrease in air humidity and light intensity, and an increase in [CO2], were accelerated. Stomatal opening following an increase in air humidity and light intensity and a decrease in [CO2] was replaced by slow closing. The rate of stomatal opening following an increase in leaf water potential was reduced. As the sensitivities to changes in light were modified less by the ABA than the other stomatal sensitivities, the prediction of stomatal responses on the basis of the sensitivity to light alone should be excluded in stomatal models.  相似文献   

8.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

9.
Responses of leaf stomatal conductance to light, humidity and temperature were characterized for winter wheat and barely grown at ambient (about 350 μmol mol?1 in the daytime), ambient + 175 and ambient + 350 μmol mol?1 concentrations of carbon dioxide in open‐topped chambers in field plots over a three year period. Stomatal responses to environment were determined by direct manipulation of single environmental factors, and those results were compared with responses derived from natural day to day variation in mid‐day stomatal conductance. The purpose of these experiments was to determine the magnitude of reduction in stomatal conductance at elevated [CO2], and to assess whether the relative response of conductance to elevated [CO2] was constant across light, humidity and temperature conditions. The results indicated that light, humidity and temperature all significantly affected the relative decrease in stomatal conductance at elevated [CO2]. The relative decrease in conductance with elevated [CO2] was greater at low light, low water vapour pressure difference, and high temperature in both species. For measurements made at saturating light near mid‐day, the ratio of mid‐day stomatal conductances at doubled [CO2] to that at ambient [CO2] ranged from 0.42 to 0.86, with a mean of 0.66 in barley, and from 0.33 to 0.80, with a mean of 0.56 in wheat. Day‐to‐day variation in the relative effect of elevated [CO2] on conductance was correlated with the relative stimulation of [CO2] assimilation rate and with temperature. Some limitations of multiple linear regression, multiplicative, and ‘Ball–Berry' models as summaries of the data are discussed. In barley, a better fit to the models occurred in individual years than for the combined data, and in wheat a better fit to the models occurred when data from near the end of the season were removed.  相似文献   

10.
Stomatal behavior in response to drought has been the focus of intensive research, but less attention has been paid to stomatal density. In this study, 5-week-old maize seedlings were exposed to different soil water contents. Stomatal density and size as well as leaf gas exchange were investigated after 2-, 4- and 6-week of treatment, which corresponded to the jointing, trumpeting, and filling stages of maize development. Results showed that new stomata were generated continually during leaf growth. Reduced soil water content significantly stimulated stomatal generation, resulting in a significant increase in stomatal density but a decrease in stomatal size and aperture. Independent of soil water conditions, stomatal density and length in the trumpeting and filling stages were greater than in the jointing stage. Irrespective of growth stage, severe water deficit significantly reduced stomatal conductance (G s), decreasing the leaf transpiration rate (T r) and net photosynthetic rate (P n). Stomatal density was significantly negatively correlated with both P n and T r but more strongly with T r, so the leaf instantaneous water use efficiency (WUE i ) correlated positively with stomatal density. In conclusion, drought led to a significant increase in stomatal density and a reduction in stomatal size and aperture, resulting in decreased P n and T r. Because the negative correlation of stomatal density to T r was stronger than that to P n, leaf WUE i tended to increase.  相似文献   

11.

Background and Aims

The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2].

Methods

Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2).

Key Results

T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris.

Conclusions

The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.  相似文献   

12.
Siebold’s beech (Fagus crenata) is a common species in the cool temperate forests of Japan. As the natural regeneration of beech forests is expected to contribute to forest conservation in the future, we investigated the effects of different CO2 concentrations ([CO2]) on the growth of beech seedlings in relation to morphological and physiological changes. Acorns collected from beech forest in Minakami, central Japan were germinated and grown during a first growing season of 6 months under four [CO2] levels (200, 350, 550, and 750 μL L−1). Stem mass increased with increasing [CO2]; however, root mass did not change significantly among the treatments. As [CO2] increased, net photosynthetic rate (P n) and leaf area increased, whereas transpiration (T r), stomatal conductance, leaf chlorophyll content, and leaf longevity decreased. Although water-use efficiency (WUE; i.e., P n/T r) improved with increasing [CO2], the density of stomata did not significantly change. Increases in the number of buds and the terminal bud length with increasing [CO2] indicated accelerated formation of additional branches and leaves in the next season. The enhanced WUE levels seen in beech saplings growing under the higher environmental [CO2] levels that are expected in the future may be advantageous for their survival, considering that beech saplings prefer mesic conditions.  相似文献   

13.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

14.
Klaus Raschke 《Planta》1970,91(4):336-363
Summary CO2 exchange and air flow through the stomata were measured in leaf sections of Zea mays at temperatures between 7 and 52° and under optimal water supply. The results were summarized in polynomials fitted to the data.In leaf samples brought from 16° and darkness into different experimental temperatures and light, CO2 assimilation has a maximum near 30°. Above 37° (in other experiments above 41°), net CO2 uptake stops abruptly and is replaced by CO2 evolution in light. If a 1-hr treatment with 25° and light is inserted between darkness and the experimental temperatures, the threshold above which the assimilatory system collapses shifts 3 degrees upwards, to 40° (or 44°); the decline of CO2 assimilation with high temperatures is less steep than without pretreatment; and the upper compensation point moves upscale by as much as 5 degrees.Stomatal conductance for CO2 does not, in general, follow an optimum curve with temperature. Between 15 and 35° it is approximately proportional to net CO2 assimilation, indicating control by CO2; but above 35°, stomatal aperture increases further with temperature (and so does stomatal variability): the stomata escape the control by CO2 and above 40° may be wide open even if CO2 is being evolved. Stomatal conductance for CO2 below 15° may also be larger than would be proportional to CO2 assimilation.Net CO2 assimilation and stomatal conductance at 25° were reduced if the leaf samples were pretreated with temperatures below approximately 20° and above 30°. Stomata were more sensitive to past temperatures than was CO2 assimilation.  相似文献   

15.
This study investigated the interacting effects of carbon dioxide and ozone on photosynthetic physiology in the flag leaves of spring wheat (Triticum aestivum L. cv. Wembley), at three stages of development. Plants were exposed throughout their development to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 mol mol–1, [O3] at < 5 or 60 nmol mol–1. Gas exchange analysis, coupled spectrophotometric assay for RuBisCO activity, and SDS-PAGE, were used to examine the relative importance of pollutant effects on i) stomatal conductance, ii) quantum yield, and iii) RuBisCO activity, activation, and concentration. Independently, both elevated [CO2] and elevated [O3] caused a loss of RuBisCO protein and Vcmax. In combination, elevated [CO2] partially protected against the deleterious effects of ozone. It did this partly by reducing stomatal conductance, and thereby reducing the effective ozone dose. Elevated [O3] caused stomatal closure largely via its effect on photoassimilation.  相似文献   

16.
Monda K  Negi J  Iio A  Kusumi K  Kojima M  Hashimoto M  Sakakibara H  Iba K 《Planta》2011,234(3):555-563
The Arabidopsis Cape Verde Islands (Cvi-0) ecotype is known to differ from other ecotypes with respect to environmental stress responses. We analyzed the stomatal behavior of Cvi-0 plants, in response to environmental signals. We investigated the responses of stomatal conductance and aperture to high [CO2] in the Cvi-0 and Col-0 ecotypes. Cvi-0 showed constitutively higher stomatal conductance and more stomatal opening than Col-0. Cvi-0 stomata opened in response to light, but the response was slow. Under low humidity, stomatal opening was increased in Cvi-0 compared to Col-0. We then assessed whether low humidity affects endogenous ABA levels in Cvi-0. In response to low humidity, Cvi-0 had much higher ABA levels than Col-0. However, epidermal peels experiments showed that Cvi-0 stomata were insensitive to ABA. Measurements of organic and inorganic ions in Cvi-0 guard cell protoplasts indicated an over-accumulation of osmoregulatory anions (malate and Cl). This irregular anion homeostasis in the guard cells may explain the constitutive stomatal opening phenotypes of the Cvi-0 ecotype, which lacks high [CO2]-induced and low humidity-induced stomatal closure.  相似文献   

17.
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus × euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm−2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (g s, μmol m−2 s−1), photosynthetic CO2 fixation (A, mmol m−2 s−1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], g s was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.  相似文献   

18.
An elevated atmospheric CO2 concentration ([CO2]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open‐air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor‐pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m2 m?2, can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2] and 1.17 at elevated [CO2]. This study provides the first direct measurement of the effects of elevated [CO2] on rice canopy evapotranspiration under open‐air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.  相似文献   

19.
To test whether stomatal density measurements on oak leaf remainsare reliable tools for assessing palaeoatmospheric carbon dioxideconcentration [CO2], under changing Late Miocene palaeoenvironmentalconditions, young seedings of oak (Quercus petraea,Liebl.) weregrown at elevatedvs.ambient atmospheric [CO2] and at high humiditycombined with an increased air temperature. The leaf anatomyof the young oaks was compared with that of fossil leaves ofthe same species. In the experiments, stomatal density and stomatalindex were significantly decreased at elevated [CO2] in comparisonto ambient [CO2]. Elevated [CO2] induced leaf cell expansionand reduced the intercellular air space by 35%. Leaf cell sizeor length were also stimulated at high air humidity and temperature.Regardless of a temperate or subtropical palaeoclimate, leafcell size in fossil oak was not enhanced, since neither epidermalcell density nor length of the stomatal apparatus changed. Theabsence of these effects may be attributed to the phenologicalresponse of trees to climatic changes that balanced temporalchanges in environmental variables to maintain leaf growth underoptimal and stable conditions.Quercus petraea,which evolvedunder recurring depletions in the palaeoatmospheric [CO2], maypossess sufficient phenotypic plasticity to alter stomatal frequencyin hypostomatous leaves allowing high maximum stomatal conductanceand high assimilation rates during these phases of low [CO2].Copyright1998 Annals of Botany Company Atmospheric CO2, high humidity, elevated temperature,Quercus petraea,durmast oak, Late Miocene, palaeoclimates, leaf anatomy, stomatal density, stomatal index  相似文献   

20.
The capacity of plants to fix carbon is ultimately constrained by two core plant attributes: photosynthetic biochemistry and the conductance to CO2 diffusion from the atmosphere to sites of carboxylation in chloroplasts, predominantly stomatal conductance. Analysis of fossilized plant remains shows that stomatal density (number per unit area, D) and size (length by width, S) have fluctuated widely over the Phanerozoic Eon, indicating changes in maximum stomatal conductance. Parallel changes are likely to have taken place in leaf photosynthetic biochemistry, of which maximal rubisco carboxylation rate, Vcmax is a central element. We used measurements of S and D from fossilized plant remains spanning the last 400 Myr (most of the Phanerozoic), together with leaf gas exchange data and modeled Phanerozoic trends in atmospheric CO2 concentration, [CO2]a, to calibrate a [CO2]a‐driven model of the long‐term environmental influences on S, D and Vcmax. We show that over the Phanerozoic large changes in [CO2]a forced S, D and Vcmax to co‐vary so as to reduce the impact of the change in [CO2]a on leaf CO2 assimilation for minimal energetic cost and reduced nitrogen requirements. Underlying this is a general negative correlation between S and D, and a positive correlation between water‐use efficiency and [CO2]a. Furthermore, the calculated steady rise in stomatal conductance over the Phanerozoic is consistent with independent evidence for the evolution of plant hydraulic capacity, implying coordinated and sustained increase in gas exchange capacity and hydraulic capacity parallel long‐term increases in land plant diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号