首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Aspects of floral morphology and vascular anatomy, pollination, and seed dispersal are presented for 14 species of seven genera of Loasaceae, sensu lato: (Blumenbachia, Caiophora, Cevallia, Eucnide, Loasa, Mentzelia, Petalonyx). Floral specializations such as elaborate staminodia and centrifugal androecial development parallel specializations in pollination. The affinities of the subfamilies Mentzelioideae, Loasoideae, and Gronovioideae are supported by comparative vascular anatomical evidence, and differences in direction of androecial initiation are interpreted as alternative expressions of a common pattern.  相似文献   

2.
Members of subfamily Gronovioideae are distinctive among Loasaceae in their androecial and gynoecial simplicity. The four genera of the subfamily differ, however, in chromosome number, floral novelties, and pollen exine sculpturing, which led to suggestions that the Gronovioideae were polyphyletic. Phylogenetic analyses based on sequences of the chloroplast gene matK and the internal transcribed spacer region (ITS) of nuclear rDNA have been conducted using parsimony and maximum likelihood methods to assess the monophyly of Gronovioideae and to determine the sister group relationships of gronovioid genera. The results show Gronovioideae are monophyletic and placed as the sister to Mentzelia. Within Gronovioideae, Petalonyx is sister to a clade consisting of Cevallia, Gronovia, and Fuertesia. Among the remaining Loasaceae, subfamily Mentzelioideae, as originally circumscribed, is paraphyletic. Subfamily Loasoideae is placed as the sister to the Gronovioideae-Mentzelia clade.  相似文献   

3.
4.
This study provides pollen data for 38 representative taxa belonging to all nine genera in the current classification of the tribe Spiraeeae (Rosaceae) including the monotypic Korean endemic genus Pentactina, and considers the distribution of orbicules for the first time. Pollen morphology and wall stratification were investigated using light, scanning electron and transmission electron microscopy. Spiraeeae pollen grains are small to medium in size (P = 6.9–34.0 μm, E = 7.1–28.0 μm), oblate to prolate in shape (P/E = 0.66–1.48) and tri-colporate. Spiraeeae pollen is generally characterised by striate sexine ornamentation, but four ornamentation types are recognised based on the length and direction of the ridge patterns. The observed variation in sexine ornamentation is particularly valuable at the generic level. The exine stratification of the representative Spiraeeae studied is similar and characterised by unbranched columellae and a continuous endexine. Orbicules are present in three genera of the tribe (Luetkea, Sibiraea and Xerospiraea). Orbicule distribution patterns indicate that the absence of orbicules is a synapomorphic condition of the more derived clade, comprising Pentactina + Petrophytum + Kelseya + Spiraea.  相似文献   

5.
Pollen morphology of 14 species of Collomia (Polemoniaceae) was examined by light microscopy, and by both scanning and transmission electron microscopy. Four distinct pollen types were observed which are based principally upon 1) shape, number and distribution of apertures, and 2) surface sculpturing: Type 1—zonocolporate with striate ridges; Type 2—zonocolporate with striato-reticulate ridges; Type 3—pantoporate with radiate ridges; Type 4—pantoporate with irregularly reticulate ridges. Evaluation of pollen morphology reveals considerable discrepancy with respect to presently accepted sectional classification. Collomia grandiflora of sect. Collomia has a pollen type similar to that of members of sect. Collomiastrum and is now interpreted as representing an independent evolutionary line derived from the latter section. Collomia diversifolia of sect. Courtoisia has a pollen morphology similar to that of sect. Collomia. whereas C. heterophylla of the same section possesses pollen unique within the genus. This last pollen type shows close similarity to the pollen of members of Polemonium, Gilia, Leptodactylon, and Ipomopsis. Pollen of C. tinctoria and C. tracyi of sect. Collomia are anomalous within Polemoniaceae. No significant difference in exine stratification was discernible among the four pollen types.  相似文献   

6.
Aquifoliales, as currently circumscribed, comprise five families and 20 genera, most of which have not been compared with regard to their pollen. Generic relationships within the order have not been fully resolved with molecular data, but pollen can provide a potential source of characters for future phylogenetic studies. To assess diversity in the order, pollen from 19 genera was examined with light and scanning electron microscopy. Pollen is typically tricolpate to triporate, although grains with one to nine pores were observed. Grains are small to medium, with a polar axis of 6–44 μm and an equatorial axis of 10–47 μm. Irregular pollen was recorded from nine genera. Exine patterning is diverse at the generic level and includes psilate, microechinate, striate to reticulate and clavate types, and is quite complex in some genera. All but four genera of Aquifoliales can be readily distinguished by their pollen, if heavy deposits of pollenkitt (present in 11 genera) are removed during and after acetolysis. Pollen from multiple taxa of Gomphandra, the second most diverse genus in the order, was surveyed to investigate species boundaries. Specimens of Gomphandra from continental Asia exhibited seven different pollen morphologies, suggesting that exine patterns may be useful for the recognition of species in that region. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 169–190.  相似文献   

7.
David D. Biesboer 《Grana》2013,52(1-3):19-27
Pollen of 40 Acer taxa and one species of Dipteronia were examined by light, scanning and transmission electron microscopy. Pollen grains in both genera are tricolpate or tricolporate of prolate to nearly spheroidal shape. Based on sexine pattern, four major pollen types were recognized and include striate grains, rugulose grains, microreticulate grains, and granular grains. Although the family appears to be rather stenopalynous, several useful taxonomic variations occur.  相似文献   

8.
The pollen of Trigonostemon and the related genera Dimorphocalyx, Ostodes, Tritaxis and Jatropha (outgroup) has been studied with light microscopy, and scanning and transmission electron microscopy. The two major pollen types within Trigonostemon correlate well with macromorphological characters. Species belonging to the Trigonostemon reidioides type have pollen with ‘croton pattern’ ornamentation, a pistil with deeply divided stigmas (to at least half the length of the stigma arm) and stamens with a protruding appendage on the connective, while species of the Trigonostemon verrucosus type have verrucate (to almost gemmate) pollen, stigmas that are shortly cleft and stamens without an appendage on the connective. Dimorphocalyx, Ostodes, Tritaxis and Jatropha (outgroup) have similar pollen morphology, while Trigonostemon deviates from these genera in the absence of the ‘vertically’ striate ornamentation on the subunits. Therefore, when compared with an existing phylogeny of the Euphorbiaceae, the pollen characters of Trigonostemon appear to be derived. Moreover, because the ‘croton pattern’ ornamentation itself is widely shared by the ‘inaperturate crotonoids’, the loss of that structure in the Trigonostemon verrucosus type pollen is considered a further apomorphy.  相似文献   

9.
Abstract The pollen morphology of 11 species of the genus Glycyrrhiza L. with one from each of the genera Glycyrrhizopsis Boiss. & Bal. and Meristotropis Fisch. & C. A. Mey. was investigated by scanning electron microscopy. In pollen morphology, the main differences between Glycyrrhizopsis and Glycyrrhiza are: Glycyrrhizopsis—pollen grains 36.63 × 40.42 μm in size, oblate spheroidal in shape; and Glycyrrhiza—pollen grains 24.47–33.18 × 23.82–31.83 μm in size, prolate spheroidal in shape. Glycyrrhizopsis and Glycyrrhiza should be recognized as two distinct genera based on palynological and morphological characters. Meristotropis and Glycyrrhiza are similar in many important palynological and morphological characters, suggesting that the two should be merged. In Glycyrrhiza, two types of pollen grains, 3‐lobed‐circular or subtriangular in polar view, are found in different species, in accordance with morphological differences in the two groups, shedding light on the classification and evolution of the genus.  相似文献   

10.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

11.
12.
A total of 129 species from the subtribe Flueggeinae of the tribe Phyllantheae (Euphorbiaceae, Phyllanthoideae) were investigated using light and scanning electron microscopy, and 10 species using transmission electron microscopy, in order to evaluate the relationships between the eight constituent genera: Breynia, Flueggea, Glochidion, Margaritaria, Phyllanthus, Reverchonia, Richeriella, and Sauropus. Of these genera, Flueggea, Margaritaria and Richeriella share pollen with a prolate spheroidal meridional outline and a 3-colporate aperture system. Pollen of Reverchonia is also 3-colporate, but differs from that of the Flueggea alliance by its clearly prolate shape, tilioid ornamentation and absence of costae endopori. Breynia and Sauropus have 4–12 and 3–16-colporate pollen, respectively, with diploporate colpi. Two pollen types are recognised in Breynia, and four in Sauropus, one of which supports the recognition of Sect. Hemisauropus. Glochidion pollen is 3–6-colporate, and similar to that of Breynia in having reticulate sculpture with Y-shaped sexine structures, but it has monoporate colpi. Of the genus Phyllanthus, only species with pollen with diploporate colpi have been studied. Seven types are described. Diploporate Phyllanthus pollen can be distinguished from that of Breynia and Sauropus by its distinct colpus margins consisting of parallel muri. Colpal irregularities and endoaperture configurations in the subtribe are discussed, and pollen morphological trends are hypothesised. Placed in the successiform aperture series, the Flueggea alliance and Reverchonia form a basal group. Glochidion is considered intermediate, giving rise to the Breynia-Sauropus group. The relationship with Phyllanthus remains unclear.  相似文献   

13.
The affinity of Schismocarpus with Loasaceae has been questioned. Characteristic trichomic features are most often used for definition of Loasaceae, and Schismocarpus possesses a distinctly loasaceous syndrome of trichomes. Its inflorescence morphology is similar to that of Eucnide and Mentzelia , and it shares floral features with Eucnide. Although Schismocarpus possesses unique features (e.g., perennating "rootstock" and striate pollen) relative to Loasaceae, it is not aberrant considering the broad range of diversity that has been long accepted within the family. The apparently divergent floral morphology may be explained by its evolution of a "pollen flower" syndrome.  相似文献   

14.
The pollen morphology of 9 of the 11 genera of the tribe Swartzieae is described together with that of Holocalyx and Cyathostegia, two genera recently removed from the tribe based on macromorphology. The pollen is small, spheroidal to subprolate, primarily tricolporate with a perforate tectum and generally typical of the Leguminosae. Nonetheless, many of the genera have distinctive pollen morphology. Baphiopsis is 6-colporate. The genera Harleyodendron, Lecointea and one species of Exostyles have supratectal spinules. Bocoa viridiflora has striate/rugulate ornamentation very distinct from the other species of the genus Bocoa. The exine stratification is varied but Candolleodendron has a very thick endexine and narrow foot layer. The pollen of African taxa does not differ significantly from that of South American taxa. Pollen morphology does not clarify the taxonomic relationships of the tribe and provides little evidence to assist in positioning Holocalyx and Cyathostegia.  相似文献   

15.
The Fabales clade comprises four families: Leguminosae, Polygalaceae, Quillajaceae and Surianaceae. This study presents new information on the pollen morphology of Quillaja, the only genus of Quillajaceae, and Recchia, Guilfoylia, Cadellia, Suriana and Stylobasium, the five genera that comprise Surianaceae. The pollen of 9 of the 11 species currently recognised within the two families was examined using light microscopy (LM), scanning electron microscopy (SEM) and, selectively, with transmission electron microscopy (TEM). Pollen of all taxa is isopolar with tri-zonocolporate apertures, lalongate endoapertures with fastigia adjacent to the endoaperture, and long ectoapertures that are nearly equal to the polar length. Apocolpia are correspondingly small. Quillaja pollen is subprolate to prolate, and striate with a granular aperture surface membrane. Ectexine protrudes over the endoapertures. In thin section the foot layer is thicker in mesocolpial areas and thin to discontinuous around the apertures, where the endexine is thicker. Cadellia pollen is prolate spheroidal, and striate with a granular aperture surface membrane. Exine protrudes over the endoapertures. In thin section the endexine is thicker and lamellate around the endoaperture area, and the foot layer is thicker in mesocolpial regions. Guilfoylia pollen is oblate and gemmate-verrucate, with a granular aperture surface membrane. Columellae are short. Recchia pollen is suboblate to oblate spheroidal, and microreticulate-perforate with a granular aperture surface membrane. Exine protrudes over the endoapertures. The foot layer is thin to discontinuous around aperture margins and thick in mesocolpial regions. Stylobasium pollen is suboblate, and finely rugulate-perforate with a granular aperture surface membrane. Columellae are short, the foot layer is thin or absent. Suriana pollen is suboblate, and finely rugulate-perforate with a granular aperture surface membrane. Pollen of Cadellia and Recchia, and Stylobasium and Suriana are morphologically similar. Verrucate surface ornamentation is only present in Guilfoylia. Quillaja, Cadellia and Recchia share the character of protruding exine over the endoaperture area. Striate ornamentation occurs in Quillaja and Cadellia. The pollen morphology of Quillajaceae has more in common with that of Leguminosae and Surianaceae, and with Cadellia in particular, than with Polygalaceae.  相似文献   

16.
This paper shows fossil spores and pollen grains from Cretaceous (Upper Campanian) of Sakhalin, Russia, with scanning electron microscopy. A total of 520 palynomorph assemblages consisting of 25% spores of pteridophytes and bryophytes, 4.5% of ephedroid pollen grains, 6.5% of coniferous pollen grains, and 64% of angiospermous pollen grains were recovered in the present study. 5 genera of pteridophytes, 4 genera of gymnosperms, and 18 genera of angiosperms are described in the present study. The frequent and representative genera from the stratum areEphedripites, Liliacidites, Clavatipollenites, Tricolpites, Aquilapollenites, andAzonia. A new genus,Sciadopitipollenites, that is comparable with extantSciadopitys is proposed in the present study. Polycolpate pollen with the same exine sculpture ofClavatipollenites suggests a generic differentiation in the Chloranthaceae during the Cretaceous age. The diverse spores and pollen paleoflora shown in the present study suggests a wide diversification of angiosperms in the Upper Campanian at the eastern side of Laurasia (Aquilapollenites province).  相似文献   

17.
In this study we examine the pollen, stigmas and ovaries from 62 collections of herbarium material representing 16 genera, using light and scanning electron microscopy. The caesalpinioid Dimorphandra group (Burkea, Dimorphandra, Erythrophleum, Mora, Pachyelasma, Stachyothyrsus and Sympetalandra) pollen grains are small, tricolporate monads, with perforate or psilate ornamentation. Dinizia, Pentaclethra and Aubrevillea have morphological characters that have suggested either a mimosoid or caesalpinioid placement. Dinizia pollen is in permanent tetrads with clavate ornamentation. Pentaclethra pollen grains are monads, two species have tricolporate pollen and the third is porate. Aubrevillea has tricolporate, finely reticulate monads. All ten genera have variable, non‐predictable stigma type and ovule number. The mimosoid Adenanthera group (Adenanthera, Tetrapleura, Amblygonocarpus, Pseudoprosopis, Calpocalyx and Xylia) pollen grains are in 8‐ to 16‐grain polyads. In all Adenanthera group species, the stigmatic cavity is only large enough to accommodate one polyad. In addition, the number of ovules present matches the number of pollen units in one polyad. Polyads have porate, operculate apertures that differ in layout, aperture morphology and development when compared with caesalpinioid and other eudicot pollen. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 594–615.  相似文献   

18.
Pollen nuclear number is determined in 139 species of 5 genera in the Euphorbieae, subtribe Euphorbiinae. The 111 new determinations are tabulated along with previous reports, and the results indicate that the distribution of binucleate (II) and trinucleate (III) pollen is strongly associated with the taxonomic groupings within the Euphorbieae. Although binucleate pollen is probably primitive within the tribe Euphorbieae, as suggested by the nuclear condition in Neoguillauminia, the situation in Euphorbia still requires further elucidation. Within Euphorbia, the morphologically most primitive species studied have III pollen despite the fact that II pollen is presumably the original condition for the subtribe Euphorbiinae. In Euphorbia, II pollen only is reported from nine sections and III pollen only from ten sections, while in four sections (Esula, Goniostema, Aphyllis, and Deuterocalli) both II and III pollen have been found. The New World species of Euphorbia nearly all have III pollen, whereas the vast majority of the African succulents have II pollen. The genera of New World origin, Chamaesyce and Pedilanthus, have III pollen, while the African genera Monadenium and Synadenium have II pollen. Independent derivations of III pollen from II pollen appear to have occurred in sections Goniostema, Aphyllis, and Deuterocalli (all of subg. Euphorbia). There is no evidence that reversals from III to II pollen have occurred.  相似文献   

19.
The four genera investigated show solitary sulcate pollen grains. The structure and sculpture of the sporoderm is very similar inBocageopsis andUnonopsis, and supports the close relationship of both genera; their flower morphology also is very similar. In contrast, the sporoderm ofEphedranthus, and especially that ofMalmea, is different in some characters and suggests more remote relationships; this is also confirmed by differences in flower morphology. Within this group of genera a distinct exine progression can be recognized from non-columellate (Malmea) to granular (Unonopsis guatterioides), further to somewhat irregularly (Bocageopsis, someUnonopsis species), and finally to very regularly columellate (Ephedranthus). The sculpture of the tectum varies from a reticulum with large lumina (Malmea) to one with small performations (Ephedranthus). Within theAnnonaceae the genusMalmea is among the most primitive in respect to pollen structure. The sulcus of the four genera is very large and runs over 1/3 of the pollen grain. It is characterized by a reduction of the exine and a bulgy thickening of the intine.
  相似文献   

20.
The origin and evolution of angiosperms can be unravelled by using fossil records to determine first occurrences and phytogeographic histories of plant families and genera. Many angiosperm families, for example the Onagraceae, have a poor macrofossil record, but are more common in palynological records. Modern Onagraceae produce pollen clearly distinct from that of other angiosperms. Combined morphological features obtained by use of light and scanning electron microscopy have enabled assignment of fossil Onagraceae pollen to extant genera, and therefore tracing of the origin and past distributions of extant Onagraceae lineages. We studied a Miocene palynoflora from the Daotaiqiao Formation of north-east China. Using the single-grain technique, we examined individual Onagraceae pollen/tetrads using both light and scanning electron microscopy. Fossil Onagraceae pollen is more frequent than macrofossil remains, but is still rare, and usually represented by a single taxon in palynological samples. Remarkably, samples from the Miocene of north-east China contain five different species: two of Circaea, one of Epilobium, and two of Ludwigia. Such a large number of Onagraceae taxa from a single palynoflora is unknown elsewhere. Whereas Ludwigia pollen is known from Cenozoic sediments of the northern hemisphere, the Circaea pollen is the first fossil pollen assignable to this extant genus. This is also the first fossil record of Epilobium from China. Although the young geological age of this sample does not enable consideration of time of origin for the genera encountered, the co-occurrence of Circaea, Epilobium, and Ludwigia in the mid to late-Miocene of East Asia sheds some light on their phytogeographic histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号