首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmopara halstedii, the causal agent of downy mildew of cultivated sunflower (Helianthus annuus), was documented in Germany for the first time in commercial fields. The pathogen was first observed in the Württemberg area, where races 1 and 4 were identified using a set of differential lines. Later, commericial fields near Baden were found to be infected by race 5, which is the first occurrence of that race outside of North America. Withthe discovery of race 5, there are now eight races of the sunflower downy mildew fungus that have been found in Europe. The sunflower cultivars most frequently grown in Germany were investigated for resistance to race 1, 4 and 5; while all were resistant to race 1, none were resistant to either race, 4 or 5.  相似文献   

2.
Collections of the causal agent of sunflower downy mildew (Plasmopara balstedii) (PH) from several European and North and South American countries were used to inoculate a series of sunflower inbred lines to differentiate races. Race 3 was identified from Argentina; race 4 from France, Hungary, and Bulgaria; race 6 from Canada and France; and race 7 from Argentina. This is the first report of race 3 in South America and of race 4 in Europe, and is the first identification of races 6 and 7. Reactions of USDA lines RHA-274, RHA-325, and DM-2 differentiate races 2, 6, and 7, with RHA-274 resistant to all three. Thirty-three commercial hybrids from 11 countries were tested; 70 % were resistant to race 2, only 27 % had resistance to race 6, and none were resistant to race 4. Surveys to determine the relative proportions of the various races within each country are needed to assess their potential impact. The USDA lines HA-335, HA-336, HA-337, HA-338, HA-339, RHA-340, HA-R4, and HA-R5 are resistant to all seven mildew races and could be utilized for the production of PH resistant hybrids. For the short term, it appears that seed treatment with metalaxyl may be the most effective control.  相似文献   

3.
 These studies were undertaken to determine whether downy mildew resistance genes in sunflower were independent as first reported, or linked as suggested by more recent hypotheses. The segregations for downy mildew reaction of 111 F3 progenies from a cross between a susceptible line and a line with Pl2 were used to locate this gene on the sunflower consensus RFLP linkage map. It was shown that Pl2 was linked to the same RFLP markers on linkage group 1 as Pl1 and Pl6, mapped earlier, and at a very similar distance. The F3 progenies showed exactly the same segregation patterns when tested with race 1 and race D. One hundred and fifty four progenies from a cross between a susceptible line and HA335, containing Pl6 (considered as giving resistance to all Plasmopara halstedii races), were tested with the five French downy mildew races, 1, A, B, C and D. Two progenies were observed to show segregation for races 1 and D, while appearing homozygous-resistant to races A , B and C. Tests on F4 progenies confirmed this separation of resistances with fixation of susceptibility to races 1 and D and resistance to races A, B and C. It is concluded that the Pl6 gene is not a “strong” gene, giving resistance to all downy mildew races, but rather a cluster of genes, each providing resistance to one, or a few, downy mildew races. The genes giving resistance to races 1 and D, on one hand, and to races A, B and C, on the other hand, must be very closely linked, with about 0.6 cM between the two groups. Received: 23 December 1996 / Accepted: 18 April 1997  相似文献   

4.
A sunflower line, XRQ, carrying the gene Pl5, which gives resistance to all French downy mildew races shows cotyledon-limited sporulation in seedling immersion tests; consequently, segregations in crosses with other downy mildew resistance sources were tested both by this method and by a secondary infection on leaves. Pl5 was found to segregate independently of Pl7 (HA338) but to be closely linked, or allelic, with Pl8 (RHA340). F3 and F4 progenies from a cross with a line containing Pl2 showed that Pl5 carries resistance to race 100 which segregates independently of Pl2. The Pl5 gene was mapped on linkage group 6 of the Cartisol RFLP map, linked to two RFLP markers, ten AFLP markers and the restorer gene Rf1. Tests with downy mildew race 330 distinguished Pl5 and Pl8, the first being susceptible, the second resistant, whereas both these genes were active against race 304 to which Pl6 (HA335) and Pl7 gave susceptibility. It is concluded that Pl5 and Pl8 are closely linked on linkage group 6 and form a separate resistance gene group from Pl6/Pl7 on linkage group 1. The origins of these groups of downy mildew resistance genes and their use in breeding are discussed. Received: 10 November 2000 / Accepted: 8 February 2001  相似文献   

5.
Sunflower downy mildew, caused by Plasmopara halstedii, is one of the major diseases of this crop. Development of elite sunflower lines resistant to different races of this oomycete seems to be the most efficient method to limit downy mildew damage. At least two different gene clusters conferring resistance to different races of P. halstedii have been described. In this work we report the cloning and mapping of two full-length resistance gene analogs (RGA) belonging to the CC-NBC-LRR class of plant resistance genes. The two sequences were then used to develop 14 sequence tagged sites (STS) within the Pl5/Pl8 locus conferring resistance to a wide range of P. halstedii races. These STSs will be useful in marker-assisted selection programs.Communicated by C. Möllers  相似文献   

6.
The interaction between sunflower plants showing a high level of quantitative resistance and five Plasmopara halstedii (the causal agent of downy mildew) isolates of several races were studied using five single zoosporangium isolates per pathogen isolate. Aggressiveness criteria were analyzed for 25 P. halstedii single zoosporangium isolates. Based on the reaction for the P. halstedii isolates to four sunflower hybrids H1–H4 varying only in their downy mildew resistance genes, there were differences in virulence spectrum in pathogen isolates. Analysis of five single zoosporangium isolates for P. halstedii isolates showed significant variability within pathogen isolate for all aggressiveness criteria but not for all pathogen isolates. The hypothesis explaining the interaction between P. halstedii and its host plant was discussed on the level of pathogenicity.  相似文献   

7.
The Pl1 locus in sunflower, Helianthus annuus L., conferring resistance to downy mildew, Plasmopara halstedii, race 1 has been located in linkage group 1 of the consensus RFLP map of the cultivated sunflower. Bulked segregant analyses were used on 135 plants of an F2 progeny from a cross between a downy mildew susceptible line, GH, and RHA266, a line carrying Pl1. Two RFLP markers and one RAPD marker linked to the Pl1 locus have been identified. The RFLP markers are located at 5.6 cM and 7.1 cM on either side of Pl1. The RAPD marker is situated at 43.7 cM from Pl1. The significance and applications of these markers in sunflower breeding are discussed.  相似文献   

8.
Downy mildew is a fungal disease of sunflower that can lead to severe yield losses. The damage caused by the pathogen can be controlled by growing resistant sunflower varieties. Gene Pl arg was introgressed into cultivated sunflower from the wild species Helianthus argophyllus and provides resistance against all known downy mildew races. In this study, we used a mapping population from the cross-RHA 419/RHA-N-49. We identified a new co-segregating simple sequence repeat marker ORS675 and confirmed the co-segregation of markers ORS716 and ORS662 with Pl arg gene. The markers were validated on two registered resistant inbred lines RHA 443 and RHA 464, as well as on twenty inbred lines RH 1–20 obtained through methods of classical breeding. Molecular marker ORS716 was assessed for usefulness in selecting resistant progeny in 12 BC populations. Markers were found to be valuable for molecular breeding in diverse genetic backgrounds and enabled transfer of the resistance gene in different sunflower genotypes.  相似文献   

9.
Morphological, pathogenic and genetic variation was studied in seven Plasmopara halstedii (sunflower downy mildew) isolates of several races using five singlezoosporangium isolates per pathogen isolate. Aggressiveness criteria were analysed in one sunflower inbred line showing a high level of quantitative resistance. Genetic relationships were detected between the single zoosporangium isolates using 12 expressed sequence tags (EST)-derived markers. Analysis of the five single zoosporangium isolates for P. halstedii isolates showed variability within pathogen isolates for all aggressiveness criteria, but not for all pathogen isolates. Isolates of races 100 and 3xx were characterised with shorter latent period and higher sporulation density than the isolate of races 7xx. All pathogen isolates showed high percentage infection values and caused a large reduction in seedling size except for one isolate involved in dwarfing. There was no relation between zoosporangia form or size and race virulence profiles or aggressiveness criteria. There was no intra-genetic variation for all pathogen isolates, but it was observed an important genetic variation between single zoosporangium isolates of all races. No correlation was detected between pathogenicity traits and EST genotypes.  相似文献   

10.
Cultured sunflower cells reacted alike to inoculation in compatible and incompatible combinations with three races of Plasmopara halstedii, cause of downy mildew. Infection structures formed on the surfaces of cells derived from both resistant and susceptible sunflowers, but no intracellular fungal structures or other signs of penetration were evident in either case. There was no indication of a hypersensitive reaction (rapid death) in cells within 20 h of inoculation in incompatible combinations. The reaction of cells in culture was not like that of intact plants in either compatible or incompatible combinations.  相似文献   

11.
Pathogenic groups among 50 Plasmopara halstedii (sunflower downy mildew) isolates belonging to races 100, 300, 304, 314, 710, 704 and 714 were identified. Based on the reaction for the P. halstedii isolates to sunflower differential line D3, these isolates were divided into two groups as more virulent isolates of the 7xx races and the less virulent isolates of 100 and 3xx races. Index of aggressiveness (sporulation density/latent period) was calculated for each isolate and the presence of significant differences between isolates of 100 and 3xx races (more aggressive) and isolates of 7xx races (less aggressive) was revealed. Consequently, it seems that P. halstedii isolates may be divided into two pathogenic groups as more virulent and less aggressive isolates of 7xx races and less virulent and more aggressive isolates of the 100 and 3xx races.  相似文献   

12.
Virulence cost (trade-off between virulence and aggressiveness) was studied in seven Plasmopara halstedii (sunflower downy mildew) isolates of races 100, 300, 304, 314, 710, 704 and 714. The seven isolates were divided, according to their virulence and aggressiveness, into two main groups as more aggressive isolates of the 100 and 3xx races that do not overcome the sunflower differential host D3, and less aggressive isolates of 7xx races that can overcome D3. Consequently, the 100 and 3xx avirulent races had a virulence cost measured by differences in aggressiveness (from 58.3 to 78.2%) compared to 7xx virulent races carrying unnecessary virulence gene.  相似文献   

13.

Background  

Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L.), an introgression line (IL5211S) was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S.  相似文献   

14.
For the first time, a method was used to measure aggressiveness of two Plasmopara halstedii races (100 and 710), the parasite causing sunflower downy mildew. Two sunflower lines showing different levels of quantitative resistance were used to measure two aggressiveness criteria: latent period and sporulation density. A strain of race 100 had a shorter latent period and greater sporulation density than a strain of race 710. The sunflower inbred line BT, rather susceptible in the field, presented a greater sporulation density and a shorter latent period than another inbred line FU, which shows greater resistance in the field. These results indicated that race 100 was more aggressive than race 710. The behaviour in the field of the two inbred lines was confirmed in the laboratory observations.  相似文献   

15.
Relationship between virulence and aggressiveness was studied in seven Plasmopara halstedii (sunflower downy mildew) pathotypes including five progeny pathotypes of races 300, 304, 314, 704 and 714 arising from two parental pathotypes of races 100 and 710. Aggressiveness criteria including percentage infection, latent period, sporulation density and reduction of hypocotyl length were analysed in one sunflower inbred line showing a high level of quantitative resistance. There were significant differences between P. halstedii pathotypes for all aggressiveness criteria. Pathogenicity of progeny pathotypes as compared with parental ones (relationship between virulence and aggressiveness) seems to be positive, negative or uncorrelated. Hypothesis explaining these cases are discussed.  相似文献   

16.
Disease resistance gene candidates (RGCs) belonging to the nucleotide-binding site (NBS) superfamily have been cloned from numerous crop plants using highly conserved DNA sequence motifs. The aims of this research were to (i) isolate genomic DNA clones for RGCs in cultivated sunflower (Helianthus annuus L.) and (ii) map RGC markers and Pl1, a gene for resistance to downy mildew (Plasmopara halstedii (Farl.) Berl. & de Toni) race 1. Degenerate oligonucleotide primers targeted to conserved NBS DNA sequence motifs were used to amplify RGC fragments from sunflower genomic DNA. PCR products were cloned, sequenced, and assigned to 11 groups. RFLP analyses mapped six RGC loci to three linkage groups. One of the RGCs (Ha-4W2) was linked to Pl1, a downy mildew resistance gene. A cleaved amplified polymorphic sequence (CAPS) marker was developed for Ha-4W2 using gene-specific oligonucleotide primers. Downy mildew susceptible lines (HA89 and HA372) lacked a 276-bp Tsp5091 restriction fragment that was present in downy mildew resistant lines (HA370, 335, 336, 337, 338, and 339). HA370 x HA372 F2 progeny were genotyped for the Ha-4W2 CAPS marker and phenotyped for resistance to downy mildew race 1. The CAPS marker was linked to but did not completely cosegregate with Pl1 on linkage group 8. Ha-4W2 was found to comprise a gene family with at least five members. Although genetic markers for Ha-4W2 have utility for marker-assisted selection, the RGC detected by the CAPS marker has been ruled out as a candidate gene for Pl1. Three of the RGC probes were monomorphic between HA370 and HA372 and still need to be mapped and screened for linkage to disease resistance loci.  相似文献   

17.
Aggressiveness was studied in seven Plasmopara halstedii (sunflower downy mildew) parental isolates of races 100, 300, 304, 314, 704, 710 and 714 using five single zoosporangium isolates per parental isolate. Aggressiveness criteria, including percentage infection and dwarfing (reduction of hypocotyl length), were analysed in one sunflower inbred line showing a high level of quantitative resistance. Analysis of five single zoosporangium isolates of each parental isolate showed variability within parental isolate for the two aggressiveness criteria, but not for all parental isolates for percentage infection and vice versa for the reduction of hypocotyl length. Percentage infection showed high values irrespective of the parental isolate used. However, all the parental isolates caused a large reduction in seedling size except for the isolate of race 314. Although percentage infection and reduction of hypocotyl length could be used to differentiate aggressiveness in P. halstedii, it seems that these criteria played a limited role to define P. halstedii isolates according to their aggressiveness.  相似文献   

18.
A set of 32 landraces (traditional local cultivars) of poppy Papaver somniferum originating in the Indian states of Rajasthan, Madhya Pradesh, Uttar Pradesh and Tamilnadu, and four Indian commercial varieties were screened over four cropping seasons for their reaction to downy mildew disease caused by Peronospora arborescens and damping-off disease caused by Pythium dissotocum under both field and artificial inoculation conditions. The landrace 1018 was found to be resistant to damping-off disease and the landraces 1014 and N3 were resistant to downy mildew disease. A yield trial conducted over two seasons showed that the damping-off disease-resistant landrace 1018 was superior to all the commercial varieties in seed, morphine and/or codeine yield. The experiments provided further evidence that there is considerable genetic variability between the landraces.  相似文献   

19.
The acclimation in relationship with virulence cost was analysed for seven Plasmopara halstedii (sunflower downy mildew) isolates including five progeny isolates of several races descending from two parental isolates of races 100 and 710. Aggressiveness criteria were analysed in one sunflower inbred line showing a high level of quantitative resistance. Isolates of races 100 and 3xx were characterised with shorter latent period and higher sporulation density than isolates of races 7xx. All isolates showed high percentage infection values and caused a large reduction in seedling size except for one isolate involved in dwarfing. The seven isolates were divided, according to their virulence and aggressiveness, into two main groups as more aggressive isolates of the 100 and 3xx races which do not overcome the sunflower differential host D3, and less aggressive isolates of 7xx races which can overcome D3. Consequently, the 100 and 3xx avirulent races had a virulence cost measured by differences in aggressiveness (from 45.5 to 76.3%) compared to 7xx virulent races carrying unnecessary virulence gene.  相似文献   

20.
The specificity of the two components of pathogenicity: virulence and aggressiveness and its relationship with genetic variability were analysed in a local Plasmopara halstedii (sunflower downy mildew) population. Pathogenic and molecular analyses were carried out on seven isolates including five progeny isolates of five races arising from two parental races 100 and 710. P. halstedii isolates showed significant differences for all aggressiveness criteria and important genetic variations. Three cases of relationship between virulence and aggressiveness for progeny isolates as compared with parental ones were found as positive, negative or uncorrelated. For solving the specificity of these cases, relationship between the two components of pathogenicity among the isolates of three different races localised in the same genetic clade was positive. The hypothesis explaining these cases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号