首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies on the reproductive biology of closely related plant species have provided valuable information to understand the causes and consequences of common-rare differences with possible applications for the management of threatened populations. The magnitude and spatiotemporal variability of seed production and pre-dispersal reproductive losses were studied for 3 years in the rare endemic Euphorbia welwitschii and in its widespread congener E. characias. The factors responsible for a decrease in potential seed production in these species were the lack of a functional ovary in the cyathium, ovary and fruit abortion, seed predation by insects and seed abortion. In E. characias, the moth Acroclita subsequana was also responsible for minor reproductive losses. The proportion of male cyathia varied significantly between seasons, populations and species, being consistently higher in E. characias than in E. welwitschii. Reproductive losses that resulted in ovary, fruit and seed abortion affected mostly the endemic species and were heavier in the populations located near the sea due to local adverse climatic conditions. Seed predators inflicted higher reproductive losses to the endemic species than to its widespread congener and their impact was particularly heavy at Risco. The two Euphorbia species differed markedly in cyathia production, with E. welwitschii producing systematically a lower number of cyathia than its widespread congener and this, together with higher levels of ovary, fruit and seed abortion, seemed to be the main reasons for the low reproductive output of this rare species.  相似文献   

2.
Gas exchange parameters, leaf nitrogen content and specific leaf area (SLA) were measured in situ on 73 C3 and five C4 plant species in Mallorca, west Mediterranean, to test whether species endemic to the Balearic Islands differed from widespread, non-endemic Mediterranean species and crops in their leaf traits and trait inter-relationships. Endemic species differed significantly from widespread species and crops in several parameters; in particular, photosynthetic capacity, on an area basis (A), was 20 % less in endemics than in non-endemics. Similar differences between endemics and non-endemics were found in parameters such as SLA and leaf nitrogen content per area (Na). Nevertheless, most of the observed differences were found only within the herbaceous deciduous species. These could be due to the fact that most of the non-endemic species within this group have adapted to ruderal areas, while none of the endemics occupies this kind of habitat. All the species-including the crops-showed a positive, highly significant correlation between photosynthetic capacity on a mass basis (Am), leaf nitrogen content on a mass basis (Nm) and SLA. However, endemic species had a lower Am for any given SLA and Nm. Hypotheses are presented to explain these differences, and their possible role in reducing the distribution of many endemic Balearic species is discussed.  相似文献   

3.
Aquilegia paui is a narrow endemic species from the north-eastern Iberian Peninsula. It has a reduced number of populations in the limestone mountain massif of Els Ports. Genetic diversity was evaluated through allozyme electrophoresis in this rare columbine, together with its widespread congener Aquilegia vulgaris. Low levels of genetic diversity were detected in both taxa, especially for A. paui. Genetic identity between the two columbines was particularly high (I = 0.990), and the allele pool of A. paui is a subset of that of its widespread congener (with the exception of a low-frequency allele that was only detected in one population of A. paui). A. paui may have recently evolved from nearby populations of A. vulgaris. Speciation of this taxon, which may still be ongoing, seems to be driven by ecological differentiation, as generally occurred for the European columbines as well as in many Mediterranean endemic species.  相似文献   

4.
Adiantum reniforme var. sinensis (Adiantaceae) is an endangered fern endemic to the Three Gorges region in southwest China. To elucidate possible ecophysiological mechanisms restricting its distribution, effects of the availability of light (28%, 14% and 7% of open field) and soil moisture (60% and 40% of field capacity) on dry matter production and allocation, leaf morphology and water use efficiency (WUE) were examined in A. reniforme var. sinensis and its widespread congener A. capillus‐veneris. Both species had lower root/shoot ratio (R/S) and higher specific leaf area (SLA) when grown at low light. However, A. reniforme var. sinensis showed less plasticity for total leaf area (LA) and leaf area ratio (LAR) than A. capillus‐veneris, and its root mass, total mass and WUE decreased as light availability decreased. Under water stress, all traits of both species except WUE were significantly affected. However, drought stress decreased total mass of A. capillus‐veneris but did not have a significant effect on A. reniforme var. sinensis. Compared with A. capillus‐veneris, A. reniforme var. sinensis had significantly higher R/S but lower values for other analyzed traits. These results suggest that A. reniforme var. sinensis is relatively superior in drought tolerance but inferior at low light, allowing it to persist in habitats with low soil moisture and high light availability but with few coexisting species present.  相似文献   

5.
Plant reproduction can be strongly affected by herbivory and different features of pollination ecology, such as pollinator visitation rates and capacity for self-pollination. The purpose of this study is to compare the relative impact of herbivory and pollination on maternal reproductive success in endemic Aquilegia viscosa and its widespread congener Aquilegia vulgaris. We conducted herbivore exclusion experiments in two populations of each species in 2 different years and showed that the maternal fertility of A. viscosa was significantly more limited by floral predation and pre-dispersal seed predation than its widespread congener. In the absence of herbivory, A. viscosa retained significantly lower maternal fertility than A. vulgaris. Experimental pollinations in an insect-free glasshouse showed that the two species have an equal seed/ovule ratio both in the absence of pollinators and in the presence of non-limiting outcross pollination. Pollinator visitation rates were significantly higher in populations of A. vulgaris than in populations of A. viscosa. In addition, path analyses showed that spur length, an important trait for pollinator attraction in Aquilegia, and, indirectly sepal and petal width, contribute positively to the seed/ovule ratio in A. vulgaris, but not in A. viscosa. These results indicate that maternal fertility of endemic A. viscosa is strongly reduced by flower and seed predation despite low rates of pollinator visitation, and that pollen or resource limitation in the wild may further reduce maternal fertility. Finally, floral trait variation appears to be decoupled from fertility variation in endemic A. viscosa, which possibly constrains the evolution of reproductive traits in this species.  相似文献   

6.
The objective of this study is to examine whether habitat, herbivory and traits related to resource acquisition, resource conservation, reproduction and dispersal differ between narrow endemic plant species and their widespread congeners. We undertook pairwise contrasts of 25 ecological characteristics and biological traits in 20 congeneric pairs of narrow endemic and widespread plant species in the French Mediterranean region. Within each pair, the two species had the same life-form, pollination mode and dispersal mode. Endemic species differed significantly from widespread congeners for a number of attributes. Endemic species occur in habitats on steeper slopes, with higher rock cover and in lower and more open vegetation than their widespread congeners. Endemic species are significantly smaller than widespread species, but show no differences in traits related to resource acquisition (specific leaf area, leaf nitrogen content, maximum photosynthetic rate) or resource conservation (leaf dry matter content). After accounting for their smaller stature, endemic species produce fewer and smaller flowers with less stigma-anther separation and lower pollen/ovule ratios and produce fewer seeds per plant than their widespread congeners. No consistent variation in seed mass and propagule structure was found between congeneric species. Herbivory levels did not differ between congeneric species. Ecological characteristics, notably the occupation of rocky habitats with low aboveground competition, may thus have played an important role in the differentiation of narrow endemic species in the Western Mediterranean. Morphological and ecophysiological traits of narrow endemic species indicate that they are not more stress-tolerant than their widespread congeners. Lower investment in pollen transfer and seed production suggest that local persistence is a key feature of the population ecology of narrow endemic species.  相似文献   

7.
Leaf mass per unit area (LMA), carbon and nitrogen contents, leaf construction cost, and photosynthetic capacity (P max) of Adiantum reniforme var. sinensis, an endangered fern endemic to the Three Gorges region in southwest China, were compared in five populations differing in habitat such as soil moisture and irradiance. The low soil moisture and high irradiance habitat population exhibited significantly higher LMA, area-based leaf construction (CCA), and carbon content (CA), but lower leaf nitrogen content per unit dry mass (NM) than the other habitat populations. The high soil moisture and low irradiance habitat populations had the lowest CCA, but their cost/benefic ratios of CCA/P max were similar to the medium soil moisture and irradiance habitat population due to their lower leaf P max. Hence A. reniforme var. sinensis prefers partially shaded, moist but well-drained, slope habitats. Due to human activities, however, its main habitats now are cliffs or steeply sloped bare rocks with poor and thin soil. The relatively high energy requirements and low photosynthetic capacity in these habitats could limit the capability of the species in extending population or interspecific competition and hence increase its endangerment.  相似文献   

8.
Effects of polyploidy on photosynthesis   总被引:2,自引:0,他引:2  
In polyploid plants the photosynthetic rate per cell is correlated with the amount of DNA per cell. The photosynthetic rate per unit leaf area is the product of the rate per cell times the number of photosynthetic cells per unit area. Therefore, the photosynthetic rate per unit leaf area will increase if there is a less than proportional increase in cell volume at higher ploidal levels, or if cell packing is altered to allow more cells per unit leaf area. In autopolyploids (Medicago sativa, C3 species, and Pennisetum americanum, C4 species) there is a doubling of photosynthesis per cell and of cell volume in the tetraploid compared to the diploid. However, there is a proportional decrease in number of cells per unit leaf area with this increase in ploidy such that the rate of photosynthesis per leaf area does not change. There is more diversity in the relationship between ploidal level (gene dosage) and photosynthetic rates per unit leaf area in allopolyploids. This is likely to reflect the effects of natural selection on leaf anatomy, and novel genetic interactions from contributed genomes which can occur with allopolyploidy. In allopolyploid wheat (C3 species) a higher cell volume per unit DNA at the higher ploidal level is negatively correlated with photosynthesis rate per unit leaf area. Although photosynthesis per cell increases with ploidy, photosynthesis per leaf area decreases, being lowest in the allohexaploid, cultivated bread wheat (Triticum aestivum). Alternatively, doubling of photosynthetic rate per cell with doubling of DNA, with apparent natural selection for decreased cell volume per unit DNA, results in higher rates of photosynthesis per leaf area in octaploid compared to tetraploid Panicum virgatum (C4) which may be a case of allopolyploidy. Similar responses probably occur in Festuca arundinacea. Therefore, in some systems anatomical factors affecting photosynthesis are also affected by ploidal level. It is important to evaluate that component as well as determining the effect on biochemical processes. Current information on polyploidy and photosynthesis in several species is discussed with respect to anatomy, biochemistry and bases for expressing photosynthetic rates.Abbreviations Chl chlorophyll - RuBPC ribulose-1,5-bisphosphate carboxylase  相似文献   

9.

Premise of the Study

The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient‐poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally‐occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function.

Methods

We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher‐nutrient soils, where trees may grow over 30 m tall.

Key Results

Pygmy plants of most species maintained similar area‐based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates.

Conclusions

Pygmy plants were not stunted by low photosynthetic rates on a leaf‐area basis; instead, several species had restricted whole‐plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.  相似文献   

10.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

11.
This paper reports on a new species of Trichomycterus from the Rio Doce basin. Unusually for new taxa in the genus during the past few decades, the new species is not narrowly endemic but instead widely distributed in its major drainage, the Rio Doce. The species has been collected and deposited in scientific collections for some years, but has been systematically misidentified as the more abundant Trichomycterus immaculatus or, to a lesser degree, as other morphologically similar species from south-eastern Brazil such as T. nigricans and T. pradensis. A combination of several morphological characteristics, such as vertebral number, pectoral-fin ray counts, pigmentation pattern and barcoding distance, were iteratively used and unambiguously distinguish the new species from all congeners. The present case reveals a pattern of diversity-discovery in which rare and narrowly endemic morphologically conspicuous species are discovered and described before visually inconspicuous taxa, even when the latter are more abundant and widespread. The morphological similarities among south-eastern Brazilian species with a uniform dark-grey color serve as basis for a brief discussion about the concepts of cryptic and pseudo-cryptic species in Trichomycterus and their consequences for potentially hidden diversity in the genus.  相似文献   

12.
To explore the traits contributing to invasion success of Eupatorium adenophorum, a noxious invasive perennial forb throughout the subtropics in Asia, Oceania, Africa, and USA, we compared the differences in ecophysiology and phenology between the invader and native E. japonicum under eight treatment combinations of two irradiances and four nitrogen additions in a two-year shadehouse experiment. The invader had significantly higher mass-based light-saturated photosynthetic rate (P max) than its native congener in all treatments, contributing to higher photosynthetic nitrogen-, phosphorus-, and energy-use efficiencies. The higher P max of the invader was associated with its higher nitrogen concentrations in the photosynthetic apparatus, which resulted from higher leaf nitrogen allocation to photosynthesis. The invader had higher specific leaf area and stomatal conductance at most of the treatments, also contributing to its higher P max. The invader was not constrained by the negative correlation between leaf lifespan and specific leaf area or P max. Leaf lifespan and total leaf area of the invader were greater than those of the native. From November to March the native congener was leafless, whereas the invader maintained a large area of leaves with relatively high P max. Biomass accumulated in these months accounted for more than 40 % of the total biomass of the invader. Our results indicate that both the ability to capture and utilize resources efficiently and the ability to use resources when they are unavailable to natives contribute to invasion success of E. adenophorum and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions.  相似文献   

13.
Photosynthetic rate (P N), SPAD value, specific leaf area (SLA), flag leaf area (FLA), and nitrogen content (LN) of genus Oryza were investigated and their correlation was analyzed to assess some of the main photosynthetic traits among different species in the genus Oryza. The results revealed wide variation in these traits. The species O. rufipogon and O. australiensis exhibited maximum photosynthetic rate. Comparison of different types of genomes (diploid: 2n=2x=24; tetraploid: 2n=4x=48) and growth habit (shade- or sun-grown) showed the species of diploid (with genome symbol EE; 2n=2x=24) genomes, with perennial and sun-grown species, had high apparent photosynthesis compared to others. The species with BB/BBCC, shade-grown and the tetraploids showed high SPAD value, and the flag leaf in sun-grown species and diploids were thicker (low SLA) compared with others. However, no significant difference could be noticed among the different types of genomes. Higher leaf area was noticed among the species of CC/CCDD genome, perennial shade-grown species and tetraploids than in others. The variety IR 36 exhibited highest leaf nitrogen concentration. Correlation analysis showed a strong relationship between P N and leaf nitrogen concentration while no marked relationships were observed among other characteristics. It implies that the species with thick and small leaves with high nitrogen concentration and high photosynthesis evolved better than others. O. rufipogon, with the same genome as O. sativa, could be one of the wild rice resources for elite crop improvement.  相似文献   

14.
Both innate and evolutionarily increased ecophysiological advantages can contribute to vigorous growth, and eventually to invasiveness of alien plants. Little effort has been made to explore the roles of innate factors of alien plants in invasiveness and the effects of CO2 enrichment on alien plant invasions. To address these problems, we compared invasive Eupatorium adenophorum, its native conspecific, and a native congener (E. japonicum) under ambient and doubled atmospheric CO2 concentrations. Native E. adenophorum from Mexico grew slower than invasive E. adenophorum but faster than native E. japonicum under both CO2 concentrations. The faster growth rate of invasive E. adenophorum was associated with higher photosynthetic capacity and leaf area ratio. For invasive E. adenophorum, the higher photosynthetic capacity was associated with higher nitrogen (N) allocation to photosynthesis, which was related to lower leaf mass per area; the higher leaf area ratio was due to lower leaf mass per area and higher leaf mass fraction. Tradeoff between N allocations to photosynthesis versus defenses was found. CO2 enrichment significantly increased relative growth rate and biomass accumulation by increasing actual photosynthetic rate for all studied materials. However, the relative increase in growth was not significantly different among them. CO2 enrichment did not influence N allocation to photosynthesis, but increased N allocation to cell walls. The reduced leaf N content decreased N content in photosynthesis, explaining the down-regulation of photosynthetic capacity under prolonged elevated CO2 concentration. Our results indicate that both innate and evolutionary advantages in growth and related ecophysiological traits contribute to invasiveness of invasive E. adenophorum, and CO2 enrichment may not aggravate E. adenophroum’s invasion in the future.  相似文献   

15.
A suite of functionally-related characters and demography of three species of Neotropical shadeadapted understory shrubs (Psychotria, Rubiaceae) were studied in the field over five years. Plants were growing in large-scale irrigated and control treatments in gaps and shade in old-growth moist forest at Barro Colorado Island, Panama. Irrigation demonstrated that dry-season drought limited stomatal conductance, light saturated photosynthesis, and leaf longevity in all three species. Drought increased mortality of P. furcata. In contrast, irrigation did not affect measures of photosynthetic capacity determined with an oxygen electrode or from photosynthesis-CO2 response curves in the field. Drought stress limited field photosynthesis and leaf and plant survivorship without affecting photosynthetic capacity during late dry season. Leaves grown in high light in naturally occurring treefall gaps had higher photosynthetic capacity, dark respiration and mass per unit area than leaves grown in the shaded understory. P. furcata had the lowest acclimation to high light for all of these characters, and plant mortality was greater in gaps than in shaded understory for this species. The higher photosynthetic capacity of gap-grown leaves was also apparent when photosynthetic capacity was calculated on a leaf mass basis. Acclimation to high light involved repackaging (higher mass per unit leaf area) as well as higher photosynthetic capacity per unit leaf mass in these species. The three species showed two distinct syndromes of functionally-related adaptations to low light. P. limonensis and P. marginata had high leaf longevity (3 years), high plant survivorship, low leaf nitrogen content, and high leaf mass per unit area. In contrast, P. furcata had low leaf survivorship (1 year), high plant mortality (77–96% in 39 months), low leaf mass per unit area, high leaf nitrogen content, and the highest leaf area to total plant mass; the lowest levels of shelf shading, dark respiration and light compensation; and the highest stem diameter growth rates. This suite of characters may permit higher whole-plant carbon gain and high leaf and population turnover in P. furcata. Growth in deep shade can be accomplished through alternative character syndromes, and leaf longevity may not be correlated with photosynthetic capacity in shade adapted plants.  相似文献   

16.
The relative importance that biomechanical and biochemical leaf traits have on photosynthetic capacity would depend on a complex interaction of internal architecture and physiological differences. Changes in photosynthetic capacity on a leaf area basis and anatomical properties during leaf development were studied in a deciduous tree, Prunus persica, and an evergreen shrub, Olea europaea. Photosynthetic capacity increased as leaves approached full expansion. Internal CO2 transfer conductance (g i) correlated with photosynthetic capacity, although, differences between species were only partially explained through structural and anatomical traits of leaves. Expanding leaves preserved a close functional balance in the allocation of resources of photosynthetic component processes. Stomata developed more rapidly in olive than in peach. Mesophyll thickness doubled from initial through final stages of development when it was twice as thick in olive as in peach. The surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area tended to decrease with increasing leaf expansion, whereas, the fraction of mesophyll volume occupied by the intercellular air spaces increased strongly. In the sclerophyllous olive, structural protection of mesophyll cells had priority over efficiency of photochemical mechanisms with respect to the broad-leaved peach. The photosynthetic capacity of these woody plants during leaf development relied greatly on mesophyll properties, more than on leaf mass per area ratio (LMA) or nitrogen (N) allocation. Age-dependent changes in diffusion conductance and photosynthetic capacity affected photosynthetic relationships of peach versus olive foliage, evergreen leaves maturing functionally and structurally a bit earlier than deciduous leaves in the course of adaptation for xeromorphy.  相似文献   

17.
The Gray-crowned Palm-Tanager (Phaenicophilus poliocephalus), sometimes considered conspecific with its more widespread congener P. palmarum, is restricted to Haiti’s Tiburon Peninsula, a biodiversity hotspot threatened by extensive habitat loss. We used a multilocus phylogeographic approach to identify evolutionarily distinct populations of Phaenicophilus. Mitochondrial haplotypes formed two reciprocally monophyletic groups separated by 5% uncorrected divergence. Genealogical patterns of differentiation at nuclear intron alleles were congruent with those of mtDNA, and the two species also differed in body size and shape. An ancient sea channel between the Tiburon Peninsula and mainland Haiti was likely a dispersal barrier that led to allopatric divergence, a hypothesis supported by our estimates of divergence times. Our results support the recognition of two Palm-Tanager species, confirming P. poliocephalus as Haiti’s only endemic bird species and underscoring the need to protect the Tiburon Peninsula’s single primary forest reserve.  相似文献   

18.
Taxa endemic to North-western Europe are rare, but the orchid genusDactylorhiza contains several species restricted to this area. Evidence from morphological and cytological studies have indicated that some species may have arisen recently and may be of hybrid origin. In the present report, I use allozymes to characterize the genomes in various species ofDactylorhiza and evaluate the possibilities for rapid evolutionary change in the genus. Allotetraploid species have evolved repeatedly from two principal diploid ancestral lineages. These lineages include extant diploid and autotetraploid species, from which allotetraploid derivatives may still arise. It is suggested that allotetraploidization dominates over introgression as speciation mechanism in the genus. The more common and widespread allotetraploid species could be characterized by their allozyme characters over considerable distances, indicating that each of them may have a unique origin and that they have spread from their ancestral populations to the present distribution areas. However, it is also possible that some allotetraploid species contain local populations that have been independently derived from the ancestral lineages.  相似文献   

19.
Genetic diversities were examined using six microsatellite markers amplifiable in three rare and one widespread species of Tricyrtis section Flavae, which are endemic to Japan. Contrary to a general expectation, the three rare species, Tricyrtis flava, Tricyrtis ohsumiensis and Tricyrtis perfoliata, have comparable genetic variation at the species level to that of the widespread Tricyrtis nana. This is probably because T. nana has not sufficiently recovered genetic diversity from the bottleneck at speciation or because recent range contractions have occurred in the three rare species. Genetic diversity at the population level was smaller in the putative selfing species T. nana than in the other three outcrossing species. Compared with a preceding study using allozyme markers, the genetic diversity in microsatellite loci was considerably larger, probably resulting from higher mutation rates at the microsatellite loci. Owing to the high genetic diversity of the microsatellite markers, genetic differentiation among populations could be estimated even in T. nana with little allozyme polymorphism.  相似文献   

20.
Nine temperate grass species were screened for their potential to grow in the low-light conditions typical of gaps in dense vegetation. To this end, photosynthetic photon flux densities (PFD) were simulated in a growth chamber (PFD 100, 50 or 25 μmol photons m−2 s−1). Relative and absolute growth rates (RGR and AGR, respectively) of the species were regressed on ten different ecophysiological and morphogenetic plant attributes. No significant relationships were found between plant attributes and relative growth rate, while six attributes explained a significant proportion of the interspecific variance in absolute biomass growth: net photosynthetic rate at growth PFD (P net ) (75.5%), leaf apparent quantum yield of CO2 fixation (62.5%), leaf dark respiration rate (65.2%), leaf compensation PFD (71.0%), root: shoot ratio (66.4%) and plant nitrogen content on a mass basis (42.0%). Only species with extremely low allocation to roots and very high (relatively speaking) net photosynthetic rates were able to grow fast in low light. Specific leaf area (SLA), instantaneous photosynthetic nitrogen use efficiency (PNUE) and leaf nitrogen content on a mass basis as well as on an area basis were not significantly related to growth. The absence of effects of plant traits on RGR, unlike for AGR, could arise from a relationship that we observed between AGR and a fitted start value of the biomass-time course (i.e. seed mass or germination time). This suggests that interspecific differences in the very early growth stages of the plants were responsible for differences in successful development under low light, rather than differences in RGR. Based on its high explanatory power, its relative constancy with plant age and the lack of effect of growth PFD, P net would be the best candidate for characterizing potentially shade-tolerant species that are likely to establish in dense vegetation in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号