首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of defoliation on gender expression and fruit set in a north-central Florida population of the andromonoecious vine, Passiflora incarnata, during the 1984 flowering season. At three times during the flowering season (May, June, July), the leaves adjacent to flowers at four stages of development were removed, and subsequent sex and fate of each flower were determined. Defoliation affected gender of the flower by significantly decreasing the probability that the styles of the flower would deflex and the flower would thus function only as a pollen donor. Flowers were sensitive to defoliation at any stage before anthesis, though the sensitivity appeared to decrease in the most mature category of flower buds. Fruit set of hermaphroditic flowers remained unaffected by defoliation, but the probability of fruit set and gender expression were significantly influenced by the time of the flowering season. We conclude that the local photosynthate environment determines flower gender in Passiflora, but branch or entire plant photosynthate resources can compensate for local resource fluctuations and play an important role in fruit set and flower bud abortion. The sexual lability of Passiflora incarnata appears to be an adaptation to uncertain resource levels at a fine scale, caused by nearby developing fruits and the possibility of herbivore defoliation.  相似文献   

2.
Petiolar, bracteolar, and stipular glands from two varieties of Passiflora foetida were studied by both light and electron microscopy. These glands have previously been called nectaries. They do resemble the sugar-secreting glands of other Passiflora species with respect to their location and morphology. However, cytological studies together with chemical tests of the exudate support the view that the glands in the varieties studied actually secrete a resin-like substance which possibly functions as an anti-herbivore mechanism.  相似文献   

3.
Studies of andromonoecious species have shown that sex expression (proportions of hermaphrodite and staminate flowers) is quite variable. It is not known, however, whether this variation is due to variation among individuals for genetically fixed patterns of allocation to staminate and hermaphrodite flowers (population level variation) and/or to developmental plasticity of individuals in a heterogeneous environment (organismal level variation). Distinguishing between these two levels of variation is important for understanding the evolution of andromonoecy. This study investigates levels of variation in sex expression in the andromonoecious Solanum hirlum. Sex expression in this species is shown to be plastic among individuals of the same genotype (organismal level variation) and determined, in part, by the resource status of the individual. Among the genotypes examined there is also genetic variation for developmental plasticity. Thus, developmental plasticity can potentially respond to selection, and the evolution of this developmental system may have been instrumental in the establishment and maintenance of andromonoecy in S. hirtum.  相似文献   

4.
Evolution cannot proceed without phenotypic variation for selection to act on. This is particularly true of ontogenetic parameters because it is changes in these parameters that give rise to new phenotypes. I analyzed the amount and dimensionality of phenotypic variation on growth trajectories in early ontogeny in three species of finches (Fringillidae) using the recently developed infinite-dimensional model. For two species, eight traits were analyzed, and for a third, six traits. Growth data were analyzed only up to 6 d of age in two species and 8 d of age in the third. The results were very similar for all species and traits. A very large proportion of the phenotypic variation in growth trajectories was confined to a single dimension. This dimension corresponded to a simultaneous increase/decrease at all ages in early ontogeny. The eigenfunctions, each describing a family of similar-shaped growth trajectories, were highly collinear among traits. A high covariance existed among traits at the same and different ages. If some part of the phenotypic variation has an additive genetic basis, then any selection for a change in size at one age in one trait will lead to a response in a size at subsequent ages and in the other traits. This in turn suggests that morphological evolution frequently will move along a multivariate size axis, as has indeed been found in several taxa.  相似文献   

5.
Vasek , F. C. (U. California, Riverside.) Phenotypic variation in trisomics of Clarkia unguiculata. Amer. Jour. Bot. 50(4): 308–314. 1963.—Progenies of 3n × 2n crosses included, in addition to diploids, plants trisomic for 1, 2, 3, 4, 5, 6 or 7 chromosomes. Means and variances were calculated for 15 phenotypic traits, including 3 width/length ratios, in one set of progenies, and for 10 of the traits, including 2 of the ratios, in another set of progenies. In 25 trait comparisons, including 15 different traits, the means for each chromosome number class were heterogeneous in 11 comparisons, which included 8 different traits. Single trisomics differed significantly from diploids in 5 comparisons (4 different traits). Despite these significant differences the variation followed no particular pattern except that sepal length increased and pollen fertility decreased with chromosome number, and trisomics, as a group, sometimes differed from diploids with regard to the width/length ratio of leaves or petals. The variances were heterogeneous in 5 comparisons (4 different traits). Sepal length and pollen fertility were the only traits for which single trisomics were more variable than diploids and for which the entire population was more variable than diploids. In addition, in 4 progenies of self-pollinated trisomics, diploids and trisomics (which within each progeny were trisomic for the same Chromosome) differed significantly in mean value in only 3 traits (out of 60 trait comparisons). Variances were significantly different in 6 comparisons (4 different traits) but, surprisingly, diploids were more variable than trisomics in 3 of these 6 comparisons. Except for sepal length, pollen fertility and some width/length ratios, a wide variety and number of extra chromosomes rarely had a significant effect on the mean or variability of various phenotypic traits, and single specific extra chromosomes had very little effect except sometimes on pollen fertility or an occasional ratio. A large amount of variation, probably caused by the environment and the general genetic background, may obscure possible specific trisomic phenotypes. Morphological identification of specific trisomics is considered impractical in this species.  相似文献   

6.
7.
8.
为考察鲤科鱼类运动能力的个体变异和表型关联及不同加速度对匀加速游泳能力的影响, 研究在(25±0.5)℃条件下测定鲫(Carassius auratus)幼鱼的静止代谢率(Resting metabolic rate, RMR), 通过临界游泳速度(Critical swimming speed, Ucrit)法和过量耗氧(EPOC)法获取实验鱼的最大代谢率(Maximum metabolic rate, MMR)、代谢空间(Aerobic scope, AS=MMR-RMR)、相对代谢空间(Factorial aerobic scope, FAS=MMR/RMR)、Ucrit及步法转换速度(Gait transition speed, Ugt), 并在不同加速度(0.083、0.167、0.250、0.333 cm/s2)下测定鲫幼鱼的匀加速游泳能力(Constant accelerated test, Ucat)和Ugt。研究发现: 鲫幼鱼的MMR和AS与Ucrit均呈正相关, 但RMR与Ucrit不相关; 能量代谢参数(MMR、AS、RMR)与Ugt不相关。Ucrit法获取的MMR、AS、FAS与EPOC法均无平均值的显著性差异, 但2种方法获得的上述参数具有较高的个体重复性; 鲫幼鱼的能量代谢参数之间存在表型关联并且关联方向不尽相同。鲫幼鱼的Ucrit和Ugt均小于各加速度下的Ucat和Ugt, 加速度对Ucat测定无影响但对Ugt有影响。鲫幼鱼的Ugt与Ucrit或Ucat呈正相关, 并且其匀加速游泳能力参数在不同加速度下保持较高的重复性。除0.333 cm/s2外, 其他加速度下鲫幼鱼Ucat的无氧代谢组分(Ucat-Ugt)与Ucat呈正相关; 然而, 鲫幼鱼的有氧代谢组分(Ugt)与无氧代谢组分(Ucat-Ugt)呈负相关。研究表明: Ucrit法和EPOC法诱导鲫幼鱼的有氧代谢能力无方法学差异; 鲫幼鱼的能量代谢存在表型关联, 其匀加速游泳能力具有稳定个体差异, 并且该种鱼的有氧代谢与无氧代谢存在权衡。  相似文献   

9.
To understand the evolutionary significance of geographic variation, one must identify the factors that generate phenotypic differences among populations. I examined the causes of geographic variation in and evolutionary history of number of trunk vertebrae in slender salamanders, Batrachoseps (Caudata: Plethodontidae). Number of trunk vertebrae varies at many taxonomic levels within Batrachoseps. Parallel clines in number occur along an environmental gradient in three lineages in the Coast Ranges of California. These parallel clines may signal either adaptation or a shared phenotypically plastic response to the environmental gradient. By raising eggs from 10 populations representing four species of Batrachoseps, I demonstrated that number of trunk vertebrae can be altered by the developmental temperature; however, the degree of plasticity is insufficient to account for geographic variation. Thus, the geographic variation results largely from genetic variation. Number of trunk vertebrae covaries with body size and shape in diverse vertebrate taxa, including Batrachoseps. I hypothesize that selection for different degrees of elongation, possibly related to fossoriality, has led to the extensive evolution of number of trunk vertebrae in Batrachoseps. Analysis of intrapopulational variation revealed sexual dimorphism in both body shape and number of trunk vertebrae, but no correlation between these variables in either sex. Females are more elongate than males, a pattern that has been attributed to fecundity selection in other taxa. Patterns of covariation among different classes of vertebrae suggest that some intrapopulational variation in number results from changes in vertebral identity rather than changes in segmentation.  相似文献   

10.
In this paper we examine some ecological consequences and phenotypic correlates of flower size variation in wild radish, Raphanus sativus. Mean corolla diameter varied significantly among individuals within natural populations of R. sativus in California. On the average, almost 40% of flower biomass was allocated to corolla tissue. In field experiments, pollinator visitation increased significantly with corolla size. Large flowers also accumulated more nectar when pollinators were excluded from plants. In three populations, corolla size was positively correlated with allocation to pollen per flower (either anther weight or pollen grain number), but there was usually no phenotypic relationship between corolla size and several measures of female allocation (ovule number per flower, proportion fruit set, and total seed mass per fruit). Plants growing in the field produced fewer large flowers per unit of stem, and stem biomass was negatively related to corolla size for plants grown under controlled greenhouse conditions. Male and female fitness may covary differently with allocation to attractive floral features in species such as R. sativus, where seed production is often limited by resources rather than by pollen.  相似文献   

11.
Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one‐sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.  相似文献   

12.
Dwarf ginseng (Panax trifolium L., Araliaceae) is a diphasic (“sex changing”) species in which one phase has staminate flowers and the other has hermaphroditic flowers. In order to determine the relative allocations of the hermaphroditic gender phase to male and female functions,variation in population gender phase ratios, pollen production and viability, and ovule and seed production were documented. Gender phase ratios are highly male-biased. Dwarf ginseng is self-compatible, and both gender phases have viable pollen capable of effecting fertilization. Males produce more flowers and more viable pollen per anther than hermaphrodites. The phenotypic gender of hermaphrodites is extremely female-biased; it is likely that hermaphrodites function essentially as females. Sexual selection may have a role in the evolution and maintenance of differences between the gender phases in allocation to male function.  相似文献   

13.
14.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

15.
I used confirmatory factor analysis to evaluate the ability of causal developmental models to predict observed phenotypic integration in limb and skull measures at five stages of postnatal ontogeny in the laboratory rat. To analyze the dynamics of phenotypic integration, I fit successive age-classes simultaneously to a common model. Growth was the principal developmental explanation of observed phenotypic covariation in the limb and skull. No complex morphogenetic model more adequately reconstructed observed covariance structure. Models that could not be interpreted in embryological terms, coupled with a growth component, provide the best models for observed phenotypic integration. During postnatal growth, some aspects of integration vary in both the skull and limb. The covariance between factors and the proportion of variance unique to each character differ between some sequential age-classes. The factor-pattern is invariant in the limb; however, repatterning in the skull occurs in the interval between eye-opening and weaning. The temporal variation in the structure of covariation suggests that functional interactions among characters may create observed patterns of phenotypic integration. The developmental constraints responsible for evolutionary modification of phenotypes might be equally dynamic and responsive to embryonic functional interactions.  相似文献   

16.
17.
The phenology and seasonal growth of Porphyra linearis Grev. were investigated in two morphologically dissimilar populations from the west coast of Ireland. Thallus size and reproductive status of individuals were monitored monthly between June 1997 and June 1998. Both populations exhibited a similar phenology: gametophyte stages appeared on the shore in October, with spermatangial and zygotosporangial sori appearing the following February; the gametophyte stage began to degenerate in April and had disappeared completely by June. However, significant differences in growth and reproduction in the field and in cultures of plants from the two populations were observed. Thallus length and width of individuals from one population were significantly longer throughout the sample period, and reproduction and sporulation occurred 1 month earlier. Also, in situ relative growth rates (RGRs) of plants differed significantly and were correlated with different climatic factors (sunshine, day length, irradiance, rainfall, seawater temperature, and intertidal temperatures), suggesting that plants were affected by two different microhabitats. At one site, blades were more exposed to wave action, sunshine, and extreme minimum temperatures, while at the other site, blades were more protected in winter, spring, and early summer. In culture, RGRs of blades from the second site were higher than RGRs of blades from the first site under short days, corroborating the field results and suggesting a degree of phenotypic differentiation between the two populations. However, there were no sequence divergences of the RUBISCO spacer between strains of the two P. linearis populations.  相似文献   

18.
Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills.  相似文献   

19.
Multiple clonal isolates from a geographic population of Alexandrium tamarense (M. Lebour) Balech from the North Sea exhibited high genotypic and phenotypic variation. Genetic heterogeneity was such that no clonal lineage was repeatedly sampled according to genotypic markers specified by amplified fragment length polymorphism (AFLP) and microsatellites. Subsampling of genotypic data from both markers showed that ordination of individuals by pair‐wise genetic dissimilarity indices was more reliable by AFLP (482 biallelic loci) than by microsatellites (18 loci). However, resulting patterns of pair‐wise genetic similarities from both markers were significantly correlated (Mantel test P < 0.005). The composition of neurotoxins associated with paralytic shellfish poisoning (PSP) was also highly diverse among these isolates and allowed clustering of toxin phenotypes based on prevalence of individual toxins. Correlation analysis of pair‐wise relatedness of individual clones according to PSP‐toxin profiles and both genotypic characters failed to yield close associations. The expression of allelochemical properties against the cryptophyte Rhodomonas salina (Wis?ouch) D. R. A. Hill et Wetherbee and the predatory dinoflagellate Oxyrrhis marina Dujard. manifested population‐wide variation of responses in the target species, from no visible effect to complete lysis of target cells. Whereas the high genotypic variation indicates high potential for adaptability of the population, we interpret the wide phenotypic variation as evidence for lack of strong selective pressure on respective phenotypic traits at the time the population was sampled. Population markers as applied here may elucidate the ecological significance of respective traits when followed under variable environmental conditions, thereby revealing how variation is maintained within populations.  相似文献   

20.
I describe patterns of sex allocation and gamete packaging in the andromonoecious lily Zigadenus paniculatus. In this species, pistil length was continuously, but bimodally, distributed within plants, and smaller pistils contained fewer mature ovules. In hermaphrodite flowers, ovule number per flower increased with blooming rank in small plants but decreased with blooming rank in large plants. Flowers with pistils less than three-fourths stamen length almost never produced fruits and were classified as males. The pedicel, tepals, stamens, and pistil of hermaphrodite flowers were all heavier than those of males. Hermaphrodite flowers were concentrated on the terminal raceme, males on the lower racemes. In combination with acropetal blooming, this spatial separation of flower types resulted in a seasonal decline in the proportion of open flowers that were hermaphrodite. However, individual flowers were protandrous, so that the population sex ratio, initially strongly male-biased, declined as the season progressed. Hand pollinations showed that plants were self-incompatible. Inflorescence size was positively correlated with bulb size, and plants with large inflorescences had a higher proportion of male flowers. Nutrient supplementation had no effect on inflorescence size, but increased the proportion of hermaphrodite flowers. Nutrient-supplemented plants also began blooming earlier than controls. I discuss these patterns in relation to the adaptive significance of andromonoecious breeding systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号