首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John R. Rowley  Gunnar Erdtman 《Grana》2013,52(2-3):517-567
Four phenomena were observed in a study of Populus tremula and P. tremula f. gigas microspores from before microspore mitosis through mature pollen which may have general significance in the ontogeny of pollen grains: 1) The exine and orbicules (Ubisch bodies) were covered by membranes. 2) The exine and the tapetal surfaces where orbicules form were covered by a polysaccharide (PAS positive) coat until after microspore mitosis; subsequently the tapetum became plasmodial. 3) Material having the staining characteristics of the nexine 2 (endexine in the sense of Fægri) accumulated on membranes in microspores in the space between the exine and the plasma membrane. That material was almost completely gone from the wall in mature pollen. The membranes on which material had accumulated migrated through the exine. Following passage through the exine these membranes were seen as empty fusiform vesicles in micrographs of anthers prepared by commonly used methods. 4) At about microspore mitosis when the cellulosic intine begins to form, microtubules about 240 A in diameter occurred near the plasma membrane and generally parallel with it. Positive acid phosphatase reactions in tapetal cells together with the morphology of orbicules and other tapetal organelles suggest that the wall of orbicules, which is like the pollen exine, may form as a residual product of a lysosome system.

Sections of mature Salix humilis pollen were compared with Populus.  相似文献   

2.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

3.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

4.
Ren Hua Zheng  Shun De Su  Hui Xiao 《Grana》2013,52(5):363-370
Microsporongium development in Chinese fir (Cunninghamia lanceolata) was investigated using cytochemical methods with a special attention to the fluctuations (in amount and distribution) of polysaccharide and lipid reserves along the development of the microsporangium. Semi-thin sections of microsporangia at different developmental stages were stained with periodic acid–Schiff (PAS) reagent and Sudan Black B to detect insoluble polysaccharides and neutral lipids, respectively. In young microsporangia, microspore mother cells began to accumulate starch grains and lipids, which disappeared during microspore development. Following microspore division, the starch grains present in bicellular pollen disappeared and abundant lipid deposits were accumulated. In mature pollen, only abundant lipids accumulated as storage material. The pollen wall of C. lanceolata is predominantly composed of polysaccharidic intine, and the sporopollenin-containing exine is weakly developed and only forms a thin layer covering the intine.  相似文献   

5.
Light and electron microscope observations characterized the layers that comprise Vigna vexillata L. pollen walls, and identified the timing of their development. Exine sculpturings form an unusually coarse ektexinous reticulum. The structure of the ektexine is granular; this differs from the columellate/tectate type of structure typical of most angiosperm pollen. The ektexine overlies a homogeneous-to-lamellar, electron-dense endexine, which in turn surrounds a thick, microfibrillar intine. Pollen grains are triporate and operculate, with Zwischenkörper and thickened intine underlying the apertures. The ektexine forms during the tetrad period of microspore development, the endexine and Zwischenkörper during the free microspore stage, and the intine during the bicelled (pollen) stage. Coarsely reticulate exine sculpturings and the granular structure of the patterned exine wall of the pollen grains are features that make this species suitable for detailed studies of pollen wall pattern formation.  相似文献   

6.
The aim of the present study is to describe the morphology and internal wall structure of Zingiber pollen. The pollen of 18 species of Zingiber was examined by light, scanning and transmission electron microscopy. In the sections Zingiber and Dymczewiczia (Horan.) Benth. the pollen grains are spherical with cerebroid sculpturing while in the section Cryptanthium Horan. the pollen is ellipsoid with spira-striate sculpturing. All species have a thin coherent exine and an intine consisting of a thick, radially channeled outer layer and a thin, finely granular inner layer. On the basis of pollen morphology it is proposed that the section Dymczeniczia is included in the section Zingiber. The structure of the pollen wall in Zingiber resembles that of Canna and Strelitzia in having a pollen wall offering an infinite number of germination sites.  相似文献   

7.
The development of Linum microspores with very incomplete chromosome complements into miniature pollen grains with essentially normal exine and germ pores indicates that genetic control for exine deposition rests, not with the haploid genome, but with the spore cytoplasm. A close correlation between the amount of exine laid down with amount of cytoplasm in the spore also suggests that control of exine deposition is more closely related to the microspore cytoplasm rather than to the enclosed genome.  相似文献   

8.
Small dispersed anther contents of Clavalipollenites grains are reported from the Early Cretaceous (early Aptian) of Patagonia. This report represents the first documentation of in situ grains of this type from the Southern Hemisphere. The anthers are small (0.6 mm long × 0.25 mm wide); no tissues of the androecium are preserved nor is there any indication of how the sacs were attached. Some grains are still in tetrads and closely associated with numerous orbicules and tapetal membranes. Grains are 18–22 μm long and up to 15 μm wide. The exine consists of an inner homogeneous nexine that supports narrow columellae below a perforate tectum. The mature pollen wall includes uniform microgranules that ornament the muri. The chloranthaceous affinities of these Gondwana pollen sacs are established and the grains are compared with specimens recovered from slightly older or coeval sediments from the Northern Hemisphere. The discovery of these pollen sacs from Patagonia expands our understanding of early angiosperm biogeography.  相似文献   

9.
Monoletes pollen extracted from the seed fern synangium Dolerotheca sclerotica Baxter illustrate four stages in the development of the sporoderm. In the first stage the grains are up to 100 μm long and possess an apparent homogeneous exine in which there is little differentiation between the nexine and sexine. Numerous nexine lamellae and the initiation of sexine expansion mark stage 2 in exine ontogeny. Further expansion of the sexine continues in the third stage until the ratio between the nexine and sexine is approximately 1:5. The final stage in maturation of the sporoderm shows an expanded alveolate sexine with some of the sporopollenin units broken and disorganized. It is at this stage of development that nexine lamellae are most prominent. The formation of sporoderm layers in the fossil grains is compared with pollen grain development in living cycads (Cycadophyta) and a model proposed to account for the apparent early formation of nexine lamellae in Monoletes. The evolution of exine components in early pollen types is discussed.  相似文献   

10.
A new look at the acetolysis method   总被引:1,自引:0,他引:1  
The acetolysis method intreduced byGunnar Erdtman is still a very welcome and highly successful technique in palynology. However, acetolysis destroys all pollen material with the exception of sporopollenin that forms the outer pollen wall, the exine. Modern palynology in its application to plant systematics and phylogeny must consider all sporoderm characters, not only those of the exine. The neglect of the intine may distort some principal palynological aspects. This is illustrated by cases of total breakdown or gross modification of thin exine structures (e.g. inBeilschmiedia, Strelitzia) and by the clarification of apertures (e.g.,Polyalthia, Fissistigma, Calluna). In our view the investigation of both acetolysed and non-acetolysed pollen is obligatory for a well balanced view of pollen structure and function.  相似文献   

11.
Anther and pollen development in staminate and pistillate flowers of dioecious Melicoccus lepidopetalus (Sapindaceae) were examined by light and electron microscopy. Young anthers are similar in both types of flowers; they consist of epidermis, endothecium, two to four middle layers and a secretory tapetum. The microspore tetrads are tetrahedral. The mature anther in staminate flowers presents compressed epidermal cells and endothecium cells with fibrillar thickenings. A single locule is formed in the theca by dissolution of the septum and pollen grains are shed at two-celled stage. The mature anthers of pistillate flowers differ anatomically from those of staminate flowers. The epidermis is not compressed, the endothecium does not develop fibrillar thickenings, middle layers and tapetum are generally persisting, and the stomium is nonfunctional. Microspore degeneration begins after meiosis of microspore mother cells. At anthesis, uninucleate microspores and pollen grains with vegetative and generative nuclei with no cytokinesis are observed. Some pollen walls display an abnormal exine deposition, whereas others show a well formed exine, although both are devoid of intine. These results suggest that in the evolution towards unisexuality, the developmental differences of anther wall tissues and pollen grains between pistillate and staminate flowers might become more pronounced in a derived condition, such as dioecy.  相似文献   

12.
The micromorphology and ultrastructure of in situ pollen from Cycadeoidea dacotensis are described from permineralized specimens collected from the Lower Cretaceous of North America. Pollen grains are ovoid and relatively small, averaging 25 μm in length and 12 μm in width. Grains are monosulcate with the exine typically invaginated in apertural regions. Exine ornamentation ranges from punctate to psilate. The exine averages 0.73 μm in thickness and is composed of a light-staining sexine and a dark-staining nexine. The sexine consists of a thin, homogeneous tectum, typically with a well-defined inner boundary, and a thicker granular infratectum. The infratectal granules are relatively uniform in size, however, variation occurs in the arrangement of granules. In some grains, the sexine appears homogeneous because there is little lacunal space between the individual granules. The granular infratectum is in direct contact with the underlying nexine. The nexine is uniform in thickness in both apertural and nonapertural regions, and it lacks lamellae throughout. Pollen morphology and ultrastructure are compared with those of the bennettitalean genus Leguminanthus and the dispersed genus Monosulcites. In addition, the fine structure of Cycadeoidea pollen is compared to that of the gymnosperm groups with which the Bennettitales are regarded to be most closely related, including Gnetales, Pentoxylales, and Eucommiidites-type pollen-producing plants.  相似文献   

13.
Pollen grain polarity, aperture condition and pollen tube formation were examined inEphedra americana, E. foliata, E. rupestris, E. distachya, andE. fragilis using LM, SEM and TEM. In the characteristic oblate pollen, as seen in situ in the tetrad configuration, the polar axis is the minor one and the equatorial plane runs between the two narrow ends of the microspore. The intine is thick in fresh fixed mature pollen but we have seen no indication of regions having an exceptionally thick intine that could be considered associated with an aperture or apertures. About three minutes after transferring fresh pollen to the germinating medium the ridged exine splits and twists away from the intine and its enclosed protoplast. The shed exine spreads out and curls into a scroll-like configuration that is as distinctive as that of the pollen shape had been but now having the ridges and valleys perpendicular to the long axis. The pollen tube develops, in our experience with more than a hundred germinating pollen grains, near one of the narrow tips of the pollen grain's equatorial plane. The location of the pollen tube initiation probably is related to the position of the tube cell nucleus. The pollen tube starts to grow about one hour after the exine was shed. The pollen tube emerges close to the narrow end (equator) of the gametophyte. This end emerged first as the exine is shed and is opposite to the prothallial cells. The stout pollen tube is c. 10µm in diameter grown in vitro on agar. In our germination medium the stout tube continued to elongate for about 24 hours reaching a length of c. 100 µm. With respect to exine morphology the aperture condition could be considered as inaperturate. The pollen tube, however, is formed in a germination area near one end of the exineless gametophyte.  相似文献   

14.
Pollen grains of the seed plant genera Ephedra L. and Welwitschia Hook. f. (Gnetales) are of similar size, shape, and have a polyplicate exine with alternating thicker and thinner regions. Ephedra pollen is considered inaperturate and the exine is shed during germination, leaving the male gametophyte naked. The shed exine curls up and forms a characteristic structure with transverse striations. Such upcurled exines have been found in situ in Early Cretaceous seeds with affinities to Ephedra. The purpose of this study was to document the germination of Welwitschia pollen and investigate whether they also discard their exine during this process.

The pollen grains of Welwitschia are monoaperturate with a distinct, distal sulcus. During germination, the sulcus splits open and the gametophyte expands to a spherical form that extends out of the exine. The pollen tube starts to grow one or two hours later and as in Ephedra, it is displaced towards one side. The exine is not shed but remains as a “cap” that partly covers the male gametophyte. Thus, in this respect the germination process is distinctly different from that in Ephedra and this study demonstrates that discharging the exine during pollen germination is unique to Ephedra, among the polyplicate pollen producing genera in the Gnetales.  相似文献   

15.
Ultrastructural changes during omniaperturate pollen development in Trillium kamtschaticum Pall, was examined using transmission electron microscopy. The pollen mother cells are not enveloped within a thick callosic wall. The microspores resulting from successive meiosis are divided by scanty deposition of callosic wall in the tetrad. A primexine/exine template is not recognizable within the tetrad during formation of exinous components. Preexinous globules, originating from vesicles in the callosic wall, accumulate electron-dense materials and develop into exinous globules. The preexinous globules have ca 10 nm wide contacts with tilted and invaginated plasma membrane of the microspore within the callosic wall. After dissolution of the callosic wall, the microspores separate and mitosis subsequently leads to the formation of a generative cell and vegetative cell encased in a loose aggregation of developing exinous globules. When the generative cell is at the pollen grain surface, the channeled zone is initiated at the opposite side of the microspore on the surface of the vegetative cell. Just before pollen maturity, a new layer develops under the channeled zone. Thus, development of the omniaperturate pollen grains of T. kamtschaticum involves some processes that are distinct from those of Canna and Heliconia and some that are similar.  相似文献   

16.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

17.
Seven new male-sterile mutants (ms7–ms13) of Arabidopsis thaliana (L.) Heynh. (ecotype columbia) are described that show a postmeiotic defect of microspore development. In ms9 mutants, microspores recently released from the tetrad appear irregular in shape and are often without exines. The earliest evidence of abnormality in ms12 mutants is degeneration of microspores that lack normal exine sculpturing, suggesting that the MS12 product is important in the formation of pollen exine. Teratomes (abnormally enlarged microsporocytes) are also occasionally present and each has a poorly developed exine. In ms7 mutant plants, the tapetal cytoplasm disintegrates at the late vacuolate microspore stage, apparently causing the degeneration of microspores and pollen grains. With ms8 mutants, the exine of the microspores appears similar to that of the wild type. However, intine development appears impaired and pollen grains rupture prior to maturity. In ms11 mutants, the first detectable abnormality appears at the mid to late vacuolate stage. The absence of fluorescence in the microspores and tapetal cells after staining with 4′,6-diamidino-2-phenylindole (DAPI) and the occasional presence of teratomes indicate degradation of DNA. Viable pollen from ms10 mutant plants is dehisced from anthers but appears to have surface abnormalities affecting interaction with the stigma. Pollen only germinates in high-humidity conditions or during in-vitro germination experiments. Mutant plants also have bright-green stems, suggesting that ms10 belongs to the eceriferum (cer) class of mutants. However, ms10 and cer6 are non-allelic. The ms13 mutant has a similar phenotype to ms10, suggesting is also an eceriferum mutation. Each of these seven mutants had a greater number of flowers than congenic male-fertile plants. The non-allelic nature of these mutants and their different developmental end-points indicate that seven different genes important for the later stages of pollen development have been identified. Received: 14 August 1997 / Accepted: 7 October 1997  相似文献   

18.
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.

Endosomal sorting complex required for transport proteins ISTL1 and LIP5 are required for exocytosis of both plasma membrane and secreted proteins in tapetal cells during microspore formation.  相似文献   

19.
Formation of the unique and highly diverse outer cell wall, or exine, of pollen is essential for normal pollen function and survival. However, little is known about the many contributing proteins and processes involved in the formation of this wall. The tomato gene LeGRP92 encodes for a glycine-rich protein produced specifically in the tapetum. LeGRP92 is found as four major forms that accumulate differentially in protein extracts from stamens at different developmental stages. The three largest molecular weight forms accumulated during early microspore development, while the smallest molecular weight form of LeGRP92 was present in protein extracts from stamens from early microsporogenesis through anther dehiscence, and was the only form present in dehisced pollen. Light microscopy immunolocalization experiments detected LeGRP92 at only two stages, late tetrad and early free microspore. However, we observed accumulation of the LeGRP92 at the early tetrad stage of development by removing the callose wall from tetrads, which allowed LeGRP92 detection. Transmission electron microscopy confirmed the LeGRP92 accumulation from microspore mother cells, tetrads through anther dehiscence. It was observed in the callose surrounding the microspore mother cells and tetrads, the exine of microspores and mature pollen, and orbicules. Plants expressing antisense RNA had reduced levels of LeGRP92 mRNA and protein, which correlated to pollen with altered exine formation and reduced pollen viability and germination. These data suggest that the LeGRP92 has a role in facilitating sporopollenin deposition and uniform exine formation and pollen viability.  相似文献   

20.
Pollen wall development in Sorghum bicolor is morphologically and temporally paralleled by the formation of a prominent orbicular wall on the inner tangential surface of the tapetum. In the late tetrad stage, a thin, nearly uniform primexine forms around each microspore (except at the pore site) beneath the intact callose; concurrently, small spherical bodies (pro-orbicules) appear between the undulate tapetal plasmalemma and the disappearing tapetal primary wall. Within the primexine, differentially staining loci appear, which only develop into young bacula as the callose disappears. Thus, microspore walls are devoid of a visible exine pattern when released from tetrads. Afterwards, sporopollenin accumulates simultaneously on the primexine and bacula, forming the exine, and on the pro-orbicules, forming orbicules. Channels develop in the tectum and nexine, and both layers thicken to complete the microspore exine. Channeled sporopollenin also accumulates on the orbicules. A prominent sporopollenin reticulum interconnects the individual orbicules to produce an orbicular wall; this wall persists even after the tapetal protoplasts degenerate and after anthesis. While the pollen grains become engorged with reserves, a thick intine, containing conspicuous cytoplasmic channels, forms beneath the exine. Fibrous material collects beneath the orbicular wall. The parallel development and morphological similarities between the tapetal and pollen walls are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号