首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

2.
Differences in floral display size between male and female plants in dioecious species are often considered to be the result of competition within and between male and female plants to attract insects, although this hypothesis is rarely tested. In a field study of the alpine dioecious herb Aciphylla glacialis , insect visitation rates were found to increase with increasing floral display, as predicted. Dipterans were the most common visitors to male and female inflorescences, both in terms of individuals visits (2083 out of 2581 total visits by insects), and species number (20 morphospecies, potentially 22 species). Larger male inflorescences attracted 1.7 times as many insects in total, and 3.1 times more visits by the most common flower visitor, Musca vetustissima than did female inflorescences, but equal number of visits by the next most common flying visitors, Poecilohetaerus aquilius and Tephritis poenia. There was no difference in the amount of time M. vetustissima individuals spent on male and female inflorescences, even though male inflorescences have more flowers. Larger displays (four and eight inflorescences) of either sex attracted more visits than smaller ones (one inflorescence), although the rate of increase in visitation rate with increasing floral display declined. The response of insects to increasing floral display does not support the predicted escalating or proportionate increasing rate of visitation of some models for the evolution of dimorphism in floral displays in dioecious plants.  相似文献   

3.
In animal-pollinated plants with unisexual flowers, sexual dimorphism in floral traits may be the consequence of pollinator-mediated selection. Experimental investigations of the effects of variation in flower size and floral display on pollinator visitation can provide insights into the evolution of floral dimorphism in dioecious plants. Here, we investigated pollinator responses to experimental arrays of dioecious Sagittaria latifolia in which we manipulated floral display and flower size. We also examined whether there were changes in pollinator visitation with increasing dimorphism in flower size. In S. latifolia, males have larger flowers and smaller floral displays than females. Visitation by pollinators, mainly flies and bees, was more frequent for male than for female inflorescences and increased with increasing flower size, regardless of sex. The number of insect visits per flower decreased with increasing floral display in males but remained constant in females. Greater sexual dimorphism in flower size increased visits to male inflorescences but had no influence on the number of visits to female inflorescences. These results suggest that larger flower sizes would be advantageous to both females and males, and no evidence was found that females suffer from increased flower-size dimorphism. Small daily floral displays may benefit males by allowing extended flowering periods and greater opportunities for effective pollen dispersal.  相似文献   

4.
Huang SQ  Tang LL  Sun JF  Lu Y 《The New phytologist》2006,171(2):417-424
Pollinator-mediated selection has been hypothesized as one cause of size dimorphism between female and male flowers. Flower number, ignored in studies of floral dimorphism, may interact with flower size to affect pollinator selectivity. In the present study, we explored pollinator response, and estimated pollen receipt and removal, in experimental populations of monoecious Sagittaria trifolia, in which plants were manipulated to display three, six, nine or 12 female or male flowers per plant. In this species, female flowers are smaller but have a more compressed flowering period than males, creating larger female floral displays. Overall, pollinators preferred to visit male rather than female displays of the same size. Both first visit per foraging bout and visitation rates to female displays increased with display size. However, large male displays did not show increased attractiveness to pollinators. A predicted relationship that pollen removal, rather than pollen receipt, is limited by pollinator visitation was confirmed in the experimental populations. The results suggest that the lack of selection on large male displays may affect the evolution of floral dimorphism in this species.  相似文献   

5.
Green dragon (Arisaema dracontium; Araceae) is a perennial woodland herb capable of switching gender from year to year. Small flowering plants produce only male flowers but when larger they produce male and female flowers simultaneously. Distinct male and monoecious phenotypes (referred to hereafter as plants) share a single underlying cosexual genotype. Four populations in southern Louisiana were sampled to determine frequencies and size distributions of male and monoecious plants, and to determine the relationship of plant size with male and female flower production in monoecious plants. Male plants were significantly smaller than monoecious plants and made up 34%–78% of flowering plants within populations. Flower number (average = 120) was weakly positively correlated with size. Monoecious plants produced an average of 169 flowers (90 female) and had 100% fruit set, with individual berries containing an average of 2.5 ovules and 1.3 filled seeds. Male flower number was negatively correlated, and female flower number positively correlated, with basal stem diameter. Extrapolation of regression slopes suggested that green dragon should become completely female at a size 20% larger than the largest plant observed in this study. A simple model of inflorescence development is presented to illustrate how the reproductive system of green dragon is related to that of jack-in-the-pulpit (A. tnphyllum), which exhibits a more distinct switch between male and female phenotypes.  相似文献   

6.
Myriophyllum ussuriense has been described as dioecious but monoecious plants were newly found from some populations in south-western Japan. Sex expression of monoecious plants proved labile and they sometimes bore male or female flowers alone. On the other hand, sex expression of dioecious plants was stable and seemed to be fixed genetically. M. ussuriense may be still in the course of differentiation from monoecy to dioecy. Received 13 April 2001/ Accepted in revised form 22 May 2001  相似文献   

7.
Clonality is often implicated in models of the evolution of dioecy, but few studies have explicitly compared clonal structure between plant sexual systems, or between the sexes in dioecious populations. Here, we exploit the occurrence of monoecy and dioecy in clonal Sagittaria latifola (Alismataceae) to evaluate two main hypotheses: (i) clone sizes are smaller in monoecious than dioecious populations, because of constraints imposed on clone size by costs associated with geitonogamy; (ii) in dioecious populations, male clones are larger and flower more often than female clones because of sex‐differential reproductive costs. Differences in clone size and flowering could result in discordance between ramet‐ and genet‐based sex ratios. We used spatially explicit sampling to address these hypotheses in 10 monoecious and 11 dioecious populations of S. latifolia at the northern range limit in Eastern North America. In contrast to our predictions, monoecious clones were significantly larger than dioecious clones, probably due to their higher rates of vegetative growth and corm production, and in dioecious populations, there was no difference in clone size between females and males; ramet‐ and genet‐based sex ratios were therefore highly correlated. Genotypic diversity declined with latitude for both sexual systems, but monoecious populations exhibited lower genotypic richness. Differences in life history between the sexual systems of S. latifolia appear to be the most important determinants of clonal structure and diversity.  相似文献   

8.
Large floral displays should theoretically provide advantages to plants through increased pollinator visitation and resulting fruit and seed set. However empirical tests of the response of pollinators to floral display size have been limited by a lack of direct experimentation, and the results of such studies have been equivocal. In addition, other selective agents such as pre-dispersal seed predators might modulate effects of floral display on pollination. By artificially altering flower number, we examined the direct effects of floral display in the monocarpic herb, Ipomopsis aggregata (Polemoniaceae), on visitation rates by broad-tailed and rufous hummingbird pollinators, as well destruction of fruits by a pre-dispersal seed predator (Hylemya: Anthomyiidae). In addition, we quantified the ultimate effects of flower number on female reproductive success. Plants with larger floral displays were most likely to be visited first in any given foraging bout (P < 0.01). As expected, plants with more flowers received more total flower visits. However, we found no gain in the proportion of flowers visited for many- versus few-flowered plants, or the total number of approaches/hour. In fact, a significantly greater percentage of flowers were visited on few-flowered plants. Plants did not compensate for our reduction in flowers by increasing investment in the number or proportion of flowers that set fruit, the number of seeds/fruit, or seed weight. Pre-dispersal seed predation was greater for many- than for few-flowered plants (P < 0.001), but this did not offset the potential fitness gains of producing large displays. Our data support the hypothesis that large floral displays function primarily in long-distance attraction of pollinators, and enhance maternal success. Received: 21 March 1996 / Accepted: 24 October 1996  相似文献   

9.
The flowers and inflorescences of animal-pollinated dioecious plants are generally small and inconspicuous in comparison with outcrossing cosexual species. The net benefits of an attractive floral display may be different for dioecious compared to cosexual populations because dioecious species experience a more severe reduction in pollen delivery when pollinators forage longer on fewer individuals. Here, we develop a model that predicts the decrease in pollen delivery in dioecious relative to cosexual populations from female-female, female-male and male-male visit sequences as the number of individuals visited varies. To evaluate the predictions of our model we conducted a common garden experiment with dioecious and monoecious (cosexual) arrays of the insect-pollinated herb Sagittaria latifolia. We find that, although increasing the advertisements of floral rewards (i.e. increasing floral display) attracts more pollinators to individuals, the probability that these pollinators subsequently deliver pollen to neighbouring plants depends on sexual system. Because the number of individual plants visited per foraging trip did not increase significantly with floral display, the relative pollination success of dioecious versus monoecious populations decreases with increased floral display. We propose that this could explain why dioecy is strongly correlated with reduced floral display among angiosperm species.  相似文献   

10.
Year-to-year variation in phenotypic gender in the monoecious cucurbit, Apodanthera undulata Gray was investigated. Small plants produce no flowers. Larger plants produce only staminate flowers (“male” plants), while a somewhat greater threshold size is necessary for pistillate flower production (cosexual plants). Approximately 85% of the plants that bloomed did not change gender group between years. Two measures of phenotypic gender were used: prospective femaleness, a measure standardized to the population floral ratio, and morphological femaleness, an unstandardized measure. Femaleness of cosexes between years was positively correlated; r values were somewhat greater when using morphological femaleness values. Plants that opened only staminate flowers one year were likely to open only staminate flowers the next year. Similarly, cosexes were likely to be cosexes again the following year, with similar femaleness values. Beyond the threshold size for pistillate flower production, plant size was not correlated with femaleness. These patterns suggest that all plants are male until they reach a certain size and that plants in their cosexual phase may have an intrinsic femaleness tendency due to either genotype or microsite effects.  相似文献   

11.
The dioecious species Urtica dioica harbours wide variation in sex ratio of seeds. We conducted a series of crosses to analyse the genetic basis of sex determination in this species. Dutch populations of U. dioica contain low proportions of monoecious individuals beside male and female plants. Self-pollination of monoecious plants always yielded female, male and monoecious plants, generally in a ratio of one female to three male/monoecious individuals. This motivated us to write down a simple model in which gender is determined by one major sex-determination locus with four alleles. In the model males and monoecious plants have distinct genotypes but are both heterozygous at the sex-determination locus. We first made crosses among progeny obtained after self-pollination of monoecious plants. These crosses showed that the monoecious trait generally showed Mendelian inheritance and was passed on to the next generation via both pollen and seeds. Further crosses between monoecious plants and plants from dioecious system indicated that alleles from the dioecious system are often dominant. However, many exceptions to our genetic model are observed which suggest that dominance is incomplete and/or that more genes are involved in sex determination. We discuss to what extent sex determination genes explain the strongly biased seed sex ratios and argue that additional genes, for instance genes for female choice, must also be involved.  相似文献   

12.
  • In sexually dimorphic species, hermaphrodite flowers in gynodioecious species or male flowers in dioecious species are often larger and produce more nectar than their conspecific female flowers. As a consequence, hermaphrodite or male flowers frequently receive more pollinator visits.
  • Sex ratio, flower size, floral display, nectar production and floral visits were evaluated in two natural populations of Fuchsia thymifolia, a morphologically gynodioecious but functionally subdioecious insect‐pollinated shrub.
  • Sex ratio did not differ from the expected 1:1 in the two studied populations. As expected, hermaphrodite flowers were larger than female flowers, but in contrast to the general pattern, hermaphrodite flowers did not produce nectar or produced much less than female flowers. Flower visitors were flies (68%) and bumblebees (24%), both of which showed a preference for female flowers. No sex difference was detected in either flower longevity or floral display across the flowering season.
  • Higher nectar production by females may attract more pollinators, and may be a strategy to enhance female reproductive success in this species. Finally, floral dimorphism and insect preferences did not seem to hamper the maintenance of sub‐dioecy or prevent the evolution of dioecy in F. thymifolia.
  相似文献   

13.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

14.
The genus Eurya is described as strictly dioecious, but rare leaky plants have been found in some species, causing much confusion about the sex expression of the genus. Through field investigations from 2009 to 2011, morphologically hermaphroditic flowers in Eurya obtusifolia were discovered. In order to understand the sex expression of these plants, their stamens, pistils and ovules were carefully observed. Staining methods were used to assess the functional gender. The flowers of the leaky plants can be classified into six types: pistillate, staminate, cryptic pistillate, cryptic staminate, hermaphrodite and infertile. Leaky plants usually exhibit a combination of different kinds of flowers, making them either gynoecious, androecious, gynomonoecious or monoecious. Some individuals have infertile flowers. Bagging experiments verified the bisexual function of E. obtusifolia plants, some of which possess the ability to self‐pollinate. The flower morphology of leaky plants varied more than that of dioecious ones, and the number of ovules were significantly negatively correlated with the number of stamens. These plants show lower fitness than normal dioecious plants. This may owe to allocation tradeoffs or sexual genome conflicts. As leaky dioecy is rarely reported in this genus, E. obtusifolia is an important species to study in order to better understand the ecological adaptations and evolutionary pathways that lead to dioecy in Eurya. Our findings provide some evidence that dioecy of Eurya evolved from hermaphroditism, but further studies are still needed.  相似文献   

15.
In self-compatible, hermaphroditic plants, display size-the number of flowers open on a plant at one time-is believed to be influenced by trade-offs between increasing geitonogamous selfing and decreasing per-flower pollen export as display size increases. Experimental results presented here indicate that selection through male function favors smaller display sizes in Ipomoea purpurea. In small arrays, plant display size was manipulated experimentally, and female selfing rate, male outcross success, and total male fitness were estimated using genetic markers and likelihood and regression analyses. As would be expected if larger displays experience greater geitonogamy, selfing rate increased with display size. However, the per-flower amount of pollen exported to other plants decreased with display size. The magnitude of this effect is more than sufficient to offset the increase in selfing rate, resulting in reduced per-flower total male fitness with increasing display size. The low values of inbreeding depression previously reported for this species would enhance this effect.  相似文献   

16.
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the “pollen-donation hypothesis” have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success.  相似文献   

17.
Dioecy allows separation of female and male functions and therefore facilitates separate co‐evolutionary pathways with pollinators and seed dispersers. In monoecious figs, pollinators' offspring develop inside the syconium by consuming some of the seeds. Flower‐stage syconia must attract pollinators, then ripen and attract seed dispersers. In dioecious figs, male (“gall”) figs produce pollen but not viable seeds, as the pollinators' larvae eat all seeds, while female (“seed”) figs produce mostly viable seeds, as pollinators cannot oviposit in the ovules. Hence, gall and seed figs are under selection to attract pollinators, but only seed figs must attract seed dispersers. We test the hypothesis that seed and gall syconia at the flower stage will be similar, while at the fruiting stage they will differ. Likewise, monoecious syconia will be more similar to seed than gall figs because they must attract both pollinators and seed dispersers. We quantified syconium characteristics for 24 dioecious and 11 monoecious fig species and recorded frugivore visits. We show that seed and gall syconia are similar at the flower stage but differ at the fruit stage; monoecious syconia are more similar to seed syconia than they are to gall syconia; seed and gall syconia differentiate through their ontogeny from flower to fruit stages; and frugivores visit more monoecious and seed syconia than gall syconia. We suggest that similarity at the flower stage likely enhances pollination in both seed and gall figs and that differentiation after pollination likely enhances attractiveness to seed dispersers of syconia containing viable seeds. These ontogenetic differences between monoecious and dioecious species provide evidence of divergent responses to selection by pollinators and seed dispersers.  相似文献   

18.
The aquatic weed hydrilla (Hydrilla verticillata Royle) was discovered growing in the Potomac River, south of Alexandria, VA, in Kenilworth Aquatic Gardens, Washington, D.C., and in the Chesapeake and Ohio (C&O) Canal near Seneca, MD. Cultures in Florida of the Kenilworth clone produced male flowers. This is the first report of the occurrence of the male in the U.S. Two distinct isoenzyme patterns have been identified for plants from various locations in the U.S., corresponding to a monoecious strain and a dioecious female. The occurrence of the wild colonies of the monoecious Hydrilla greatly increase the potential for physiological diversity through sexual reproduction, which may have serious consequences for the management of this weed.  相似文献   

19.
Dioecious plants (with separate male and female individuals) more often have drab, inconspicuous flowers than related bisexual plants. Models indicate, however, that similar conditions favour the evolution of showy floral displays in dioecious and bisexual plants. One difference, however, is that dioecious plants may evolve floral displays that are sexually dimorphic. We show that males are more likely to evolve showy flowers than females in animal-pollinated plants, especially when pollinators are abundant. We demonstrate that this dimorphism places showy dioecious plants at a much higher risk of extinction during years of low pollinator abundance because pollinators may fail to visit female flowers. The higher extinction risk of showy dioecious plants provides an explanation for the fact that dioecious plants that do persist tend to have inconspicuous flowers and are more often wind pollinated. It may also help explain why dioecious plants are less species-rich than related bisexual plants.  相似文献   

20.
Summary The anther-smut fungus Ustilago violacea sporulates in flowers of the dioecious host plant Silene alba. Growth chamber comparisons of healthy and diseased plants, with the genetic background of host and pathogen controlled, revealed that fungal infection increases the number of flowers produced per plant and decreases the size of individual flowers. There were few consistent effects of plant genotype or fungal isolate on diseased flower traits, but differences between the plant sexes were apparent. Stimulation of flower production is proportionally greater in females than males: thus, although healthy male plants produce many more flowers than healthy females, sexual differences in diseased flower number are reduced. Sexual differences in diseased flower size also exist, with male flowers smaller than females. A field inoculation study confirmed dimorphism in diseased flower size and demonstrated that spore production per flower was greater for males than females for all flower size classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号