首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Plants have evolved many mechanisms to increase the chance of gene dispersal mainly through pollen and environmental factors play an important role. Understanding the mechanism behind gene dispersal is therefore crucial in the correct evaluation of the use of genetically modified crops for cultivation. In this paper we address the question of weather nutrient availability for the female affects the outcome of pollen competition between two pollen donor cultivars of Cucumis sativus. We do this by carrying out controlled crosses of female plants grown at three different nutrient levels. We separated the effect of a specific donor from the effect of pollen tube growth rate by using reversed crosses of fast and slow pollen. Our results show that female effects on siring ability vary with nutrient level. Pollen with a high pollen tube growth rate was more successful when nutrient availability for the female was high. This could be the result of selection on the female to adjust preference according to environmental circumstances. Pollen tube growth rate was measured under nutrient rich circumstances, thus high performers possessed traits adapted to a nutrient rich situation. Due to trade-off effects, these traits might not be advantageous in poor environments. Instead, individuals adapted to low nutrient circumstances will have a higher pollen tube growth rate. If siring ability varies with the environment of the recipient plant, this means that assessments of gene flow must account for this variation and include both pollen donors and recipient plants subjected to a range of environmental circumstances. In risk assessments of transgenic plants, plants are often kept under experimental, homogenous conditions. If our results also apply to other species, estimates of gene flow under constant conditions may be misleading. Selection on siring ability and female preference have fundamental effects on gene flow and need to be considered in risk assessments of transgenic plants.Co-ordinating editor: I. Olivieri  相似文献   

4.
In natural populations where interfertile species coexist, conspecific and heterospecific pollen can be delivered to the stigmas. Post-pollination mechanisms might determine the seed siring success of different pollen donors within species as well as the chances for hybridization between species. Nicotiana longiflora and N. plumbaginifolia occur in sympatry in Northwest Argentina, where they have overlapping flowering seasons and share floral visitors. We explored (1) pollen tube growth rates for outcross versus self pollen in single-donor pollinations; (2) siring success of self versus outcross pollen donors in competitive pollinations, and (3) possibilities for hybridization by performing two- (outcross conspecific vs. heterospecific) and three-pollen donor (self vs. outcross vs. heterospecific) crosses. In N. longiflora, both pollen tube growth rate and siring success favored outcross pollen over self pollen and strong rejection of heterospecific pollen. In N. plumbaginifolia, pollen tube growth rate was similar for self and outcross pollen, self pollen sired similar numbers of offspring than outcross pollen and heterospecific pollen sired roughly the same number of progeny than self pollen. Results suggest that in natural sympatric populations, interspecific crosses would likely lead to unidirectional hybridization with N. plumbaginifolia as the seed parent.  相似文献   

5.
Summary Pollen size and pistil length data have been collected for 93 species of Rhododendron (Ericaceae) belonging to a number of different subgeneric taxa. For a sample of eight species in section Vireya, pollen tube growth in the style after selfor interspecific pollination has been quantified. Pollen volume and the time taken for pollen tubes to reach the ovary were both related to pistil length. Pollen-tube growth rates were generally greater for species with longer pistils and larger pollen. Increasing temperature increased the rate of pollen-tube growth. There was no detectable effect of pollen tube density on tube growth rate in the style. After interspecific pollinations tube growth rates in foreign styles could be faster or slower than in self styles. A semisterile individual with two viable pollen grains per tetrad and a plant grafted as scion to a longer-styled stock both showed more rapid pollen-tube growth than expected on the basis of pistil size. Data collected for 26 species in section Vireya showed that where extreme disparity of pollen/pistil size causes failure of interspecific crosses, one or more bridging species with intermediate pollen/pistil size can generally be selected.  相似文献   

6.
In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.  相似文献   

7.
Studies focusing on gametophytic competition have focused on differences in pollen performance (e.g., pollen germination rate and pollen tube growth rate) among donors in order to examine genetic sources of variation in siring success among them. Donors that produce the fastest growing pollen tubes are expected to fertilize more ovules relative to donors with slow growing pollen tubes under conditions of gametophytic competition. However, the performance of pollen in the field is known to be influenced by environmental conditions in addition to the genotype of donor plants. This field study of Faramea occidentalis was conducted to: (1) determine the effect of environmental conditions during pollination on pollen performance; (2) measure differences among pollen donors in pollen performance; (3) determine if the pollen of different donors responds differently to a variety of environmental conditions surrounding pollinated flowers; and (4) measure differences among pollen recipients in pollen performance. Single-donor crosses were made between four pollen donors and four pollen recipients under a variety of environmental conditions. Pollen performance was then quantified as the growth rate of the fastest pollen tube, the mean pollen tube growth rate, and by a pollen germination index. Pollination environment (the environment surrounding a pollinated flower) and recipient significantly affected all three measures of pollen performance. Pollen donors did not differ overall in pollen performance. However, there was significant among-donor variation in two of the five pollination environment conditions. Future studies of variation in relative siring success may benefit by considering pollination environment in addition to donor and recipient identity.  相似文献   

8.
Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.  相似文献   

9.
Gametophytic competition among pollen grains has been proposed as an important mechanism of sexual selection in plants. The purpose of this paper is to examine the contribution of pollen source on in vivo pollen tube growth in Chamaecrista fasciculata. We addressed two questions: 1) Is pollen tube growth affected by the genetic relatedness between the pollen source and the pollen recipient? 2) Is there significant phenotypic variation among pollen donors for pollen tube growth? We compared pollen tube growth by measuring the number of pollen tubes which germinated, reached quarter length of style, and reached the ovary resulting from self- and outcross-pollinations. The outcross pollinations included three interplant distance classes: near (within genetic neighborhood, ca. 1 m), far (between far neighborhoods and within subpopulation, ca. 20 m), and distant (between neighborhoods and adjacent subpopulations, ca. 50–100 m). Our results show that pollen tube growth was not affected by genetic relatedness, by differences between self and outcross, nor by differences due to phenotypic variation among pollen donors. In contrast, maternal environment had a strong impact on pollen tube growth. These results suggest a lack of gametophytic competition and indicate little opportunity for sexual selection on pollen tube growth in C. fasciculata.  相似文献   

10.
Pollen deposition and pollen tube formation are key components of angiosperm reproduction but intraspecific variation in these has rarely been quantified. Documenting and partitioning (populations, plants and flowers) natural variation in these two aspects of plant reproduction can help uncover spatial mosaics of reproductive success and underlying causes. In this study, we assess variation in pollen deposition and pollen tube formation for the endemic monoecious shrub Cnidoscolus souzae throughout its distribution range in Mexico, and determine how this variation is structured among populations, plants and flowers. We also infer the relative importance of pollen quantity and quality in determining pollination success in this species. While we found no evidence suggesting that pollen receipt limits C. souzae reproduction across 19 populations, we did find extensive variation in pollen load size and pollen tube number per flower. Total variation in pollen receipt and pollen tube number was mostly explained by intra‐individual and among‐population variance. Furthermore, pollen load size had a stronger effect on the number of pollen tubes at the base of the style than pollen germination rate, suggesting that pollen quantity may be more important than quality for pollen tube success in C. souzae. Our results suggest that both small within‐plant flower differences and broad‐scale differences in community attributes can play an important role in determining pollination success. We emphasise the need to evaluate patterns and sources of variation in pollen deposition and pollen tube formation as a first step in understanding the causes of variation in pollination success over broad spatial scales.  相似文献   

11.
Reactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip. Functional loss of RBOHH and RBOHJ in homozygous double mutants resulted in reduced fertility. Analyses of pollen tube growth revealed remarkable differences in growth dynamics between Col–0 and rbohh–1 rbohj–2 pollen tubes. Growth rate oscillations of rbohh–1 rbohj–2 pollen tubes showed strong fluctuations in amplitude and frequency, ultimately leading to pollen tube collapse. Prior to disintegration, rbohh–1 rbohj–2 pollen tubes exhibit high‐frequency growth oscillations, with significantly elevated growth rates, suggesting that an increase in the rate of cell‐wall exocytosis precedes pollen tube collapse. Time‐lapse imaging of exocytic dynamics revealed that NAD(P)H oxidases slow down pollen tube growth to coordinate the rate of cell expansion with the rate of exocytosis, thereby dampening the amplitude of intrinsic growth oscillations. Using the Ca2+ reporter Yellow Cameleon 3.6, we demonstrate that high‐amplitude growth rate oscillations in rbohh–1 rbohj–2 pollen tubes are correlated with growth‐dependent Ca2+ bursts. Electrophysiological experiments involving double mutant pollen tubes and pharmacological treatments also showed that ROS influence K+ homeostasis. Our results indicate that, by limiting pollen tube growth, ROS produced by NAD(P)H oxidases modulate the amplitude and frequency of pollen tube growth rate oscillations.  相似文献   

12.
Primula sieboldii E. Morren is a heterostylous clonal herb that is widely distributed in Japan but in danger of extinction in the wild. The existence of pollinators in each habitat is imperative for its long-term survival, because seeds can be produced only by insect cross-pollination between different flower morphs. In this study, we identified the pollinators of P. sieboldii in a wild habitat in Hiroshima as those insects that we observed to (a) put the proboscis into a corolla tube, (b) deposit pollen grains on the proboscis, and (c) have a proboscis of appropriate length and width. Effective pollinators were identified from their contribution to pollination. In 2015 and 2016, the flower visitations of 232 and 558 insects, respectively, were recorded and 85 and 13 insects were captured. Two Bombylius species, B. major L. and B. shibakawae Matsumura, accounted for 90% of flower-visiting insects in both years. All 14 species that we captured were considered pollinators of P. sieboldii, because they had proboscises that were long enough to reach pollen and that had pollen grains deposited on them. The total visitation rate of “Bombyliidae” was the highest among all pollinator categories. The results of potential pollen transport per flower per hour, which was based on total pollen number and total visitation rate of each pollinator category, indicated that “Bombyliidae” species were the most effective pollinators of P. sieboldii in this habitat.  相似文献   

13.
Summary A structural study of pollination in the dimorphic flowers ofCollomia grandiflora, a cleistogamous species, reveals significant differences in stigma behavior during pollination, stylar structure, the timing of generative cell division, and pollen tube growth rate patterns. The cleistogamous flower shows a loss of protandry and the stigma is receptive only after reflexing and closing of its lobes. In contrast, the chasmogamous stigma is receptive when reflexed and closes when pollen has been deposited on the lobes. Pollen tube penetration of the dry stigma papillae and entry into the style is similar in the two morphs. The chasmogamous style is solid and the cleistogamous style partly hollow. The matrix of secretion produced by the transmitting tract cells is mainly carbohydrate with a trace of lipids. It is fibrillar in nature and appears to be partly comprised of wall material from the transmitting tract cells. In the chasmogamous pollen, the generative cell enters the tube before division, which occurs between 30 and 60 min after pollination. This division correlates with an increased growth rate for the pollen tube. In the cleistogamous pollen, contact with the stigma triggers generative cell division inside the hydrated pollen grain before germination. The two resulting sperm cells exit the grain 15–30 min after pollination when the pollen tube is in the stigma lobes. The cleistogamous pollen tube shows only one phase of growth which occurs at a rate similar to that of the slow, first phase of the chasmogamous pollen.Abbreviations CH chasmogamous - CL cleistogamous - DAPI 4, 6-diamidino-2-phenylindole  相似文献   

14.
Sexual reproduction in angiosperms is siphonogamous, and the interaction between pollen tube and pistil is critical for successful fertilization. Our previous study demonstrated that mutation of the Arabidopsis turgor regulation defect 1 (TOD1) gene leads to reduced male fertility, a result of retarded pollen tube growth in the pistil. TOD1 encodes a Golgi-localized alkaline ceramidase, a key enzyme for the production of sphingosine-1-phosphate (S1P), which is involved in the regulation of turgor pressure in plant cells. However, whether TOD1s play a conserved role in the innovation of siphonogamy is largely unknown. In this study, we provide evidence that OsTOD1, which is similar to AtTOD1, is also preferentially expressed in rice pollen grains and pollen tubes. OsTOD1 knockout results in reduced pollen tube growth potential in rice pistil. Both the OsTOD1 genomic sequence with its own promoter and the coding sequence under the AtTOD1 promoter can partially rescue the attod1 mutant phenotype. Furthermore, TOD1s from other angiosperm species can partially rescue the attod1 mutant phenotype, while TOD1s from gymnosperm species are not able to complement the attod1 mutant phenotype. Our data suggest that TOD1 acts conservatively in angiosperms, and this opens up an opportunity to dissect the role of sphingolipids in pollen tube growth in angiosperms.  相似文献   

15.
Pollen tube growth is essential for the fertilization process in angiosperms. When pollen grains arrive on the stigma, they germinate, and the pollen tubes elongate through the styles of the pistils to deliver sperm cells into the ovules to produce the seeds. The relationship between the growth rate and style length remains unclear. In previous studies, we developed a liquid pollen germination medium for observing pollen tube growth. In this study, using this medium, we examined the pollen tube growth ability in Petunia axillaris subsp. axillaris, P. axillaris subsp. parodii, P. integrifolia, and P. occidentalis, which have different style lengths. Petunia occidentalis had the longest pollen tubes after 6 h of culture but had a relatively shorter style. Conversely, the pollination experiments revealed that P. axillaris subsp. parodii, which had the longest style, produced the longest pollen tubes in vivo. The results revealed no clear relationship between the style lengths and the growth rate of pollen tubes in vitro. Interspecific pollinations indicated that the styles affected pollen tube growth. We concluded that, in vitro, the pollen tubes grow without being affected by the styles, whereas, in vivo, the styles significantly affected pollen tube growth. Furthermore, interspecific pollination experiments implied that the pollen tube growth tended to be suppressed in the styles of self-incompatibility species. Finally, we discussed the pollen tube growth ability in relation to style lengths.  相似文献   

16.
Common buckwheat (Fagopyrum esculentum Moench) is an agriculturally and pharmaceutically valuable crop due to its wellbalanced essential amino acids and rutin content. However, global mass production of buckwheat is limited because its genetic self-incompatibility results in low seed sets and poor grain yield. Therefore, this study was conducted to classify the modes of pistil-pollen interaction between species belonging to the genusFagopyrum and to determine the optimal combination of outcrosses for the most successful pollinations. Based on the interaction between pistils and pollen, we classified the modes of pollen tube growth during interspecific crosses ofFagopyrum species into five categories: (i) Highly compatible: normal pollen tube elongation and style penetration within 6~24 hours of pollination, (ii) Slightly compatible: delayed (for 1~6 hours) pollen tube elongation and normal style penetration, (iii) Incompatible type I: pollen tube inhibition at the stigma, (iv) Incompatible type II: pollen tube inhibition at the style, and (v) Incompatible type III: pollen tube inhibition at the stylodium. Based on the observed pollen tube elongation and the following embryo development, highly compatible pollinations were found to be crosses betweenF. esculentum x F. cymosum and betweenF. esculentum (thrum)x F. homotropicum.  相似文献   

17.
To elucidate the importance of hybridization in evolution, it is necessary to understand the processes that affect hybridization frequency in nature. Here we focus on postpollination, prefertilization isolating mechanisms using two hybridizing species of Louisiana iris as a study system. We compared the effects of differential pollen-tube growth on the frequency of F1 hybrid formation in experimental crosses between Iris fulva and Iris hexagona. Analyses of seed production in fruits from pure conspecific and heterospecific pollinations revealed that more seeds were produced in the top half than the bottom half of fruits for all four crosses. Heterospecific pollen was applied to flowers of each species at zero to 24 h prior to conspecific pollen, thereby giving a head start to the foreign pollen. Using diagnostic isozyme markers, the frequency of hybrid progeny was examined at the level of the whole fruit and separately for the top and bottom halves of fruits. In both species, the proportion of hybrid seeds per fruit increased significantly with increasing head starts, suggesting that differences in pollen-tube growth rates affect the frequency of hybridization. In I. fulva fruits, the increase in hybrid seeds occurred in both halves of the fruits, but in I. hexagona an increase was only detected in the top half of fruits. These findings are consistent with a model that assumes attrition of pollen tubes due to the greater length of I. hexagona styles. While pollen-tube growth rate appears to be the most important factor affecting hybridization frequency in I. fulva, both pollen-tube growth rate and pollen-tube attrition appear to be important in I. hexagona.  相似文献   

18.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

19.
Artificial crosses between Helianthus annuus and H. petiolaris using 1:9, 1:1, and 9:1 mixtures of intraspecific: interspecific pollen were conducted to determine the role of interspecific pollen competition as a reproductive barrier in Helianthus. Of 1,245 achenes analyzed from the pollen competition experiments, only 49 were hybrids. The number of hybrids observed was significantly less than expectations for all three pollen mixtures, regardless of the identity of maternal parent (P < 0.01). Stigma age and pollen ratio had no significant impact on hybrid frequency. However, hybrids were significantly more frequent with H. annuus than with H. petiolaris as the maternal parent (P < 0.01). Analysis of pollen tube growth rates revealed no differences in the rate of growth of intraspecific vs. interspecific pollen. Likewise, pollinations with either intraspecific or interspecific pollen or with different pollen ratios did not affect the percentage of filled achenes. Thus, the mechanism responsible for selective fertilization by intraspecific pollen in mixed pollen loads remains unclear. Nonetheless, these findings suggest that interspecific pollen competition plays an important role in controlling the formation of hybrids between H. annuus and H. petiolaris and may partially account for patterns or differential cytoplasmic vs. nuclear introgression in Helianthus.  相似文献   

20.
Nicotiana section Alatae contains eight species with variable flower sizes and morphologies. Section members readily hybridize in the glasshouse, but no hybrids have been observed in natural sympatric and parapatric populations. To investigate interspecific crossing relationships with respect to mechanisms preventing hybridization, all members of section Alatae were intercrossed in a complete diallel. We found positive correlation between the pistil length of the pollen donor and interspecific seed set relative to the conspecific cross. Pollen tube growth rate and pollen donor pistil length were positively correlated as well. Furthermore, pollen from short-pistil members of section Alatae could only grow a maximum distance proportional to, but greater than, their own pistil lengths. Our results show that pollen tube growth capacity (i.e., rate and distance), provides a hybridization barrier in long-pistil species × short-pistil species crosses. We also found another hybridization barrier not specifically related to pollen tube growth capacity in short-pistil species × long-pistil species. Taken together, these barriers can generally be described by a ‘pistil-length mismatch’ rule; in section Alatae, pollen has the most success fertilizing ovules from species with pistil lengths similar to their own. This rule could contribute to hybridization barriers in Section Alatae because the species display dramatically different pistil lengths. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号