首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflorescence ontogeny and morphology of the det mutant of Pisum sativum L. were investigated using scanning electron microscopy. This mutation causes the production of a limited number of axillary flowers followed by the formation of an apparent terminal flower slightly offset from the vertical. Our study indicates that the apparent terminal flower arises from an axillary meristem. The terminal meristem senesces and differentiates hairs, forming a rudimentary stub in the same manner as axillary meristems of conventional (Det) and det plants. Thus the dramatic effect of the det gene on inflorescence architecture results from early apical arrest rather than conversion of the terminal meristem to a flower as implied by the symbol det. This mutant will be valuable in elucidating regulation of apical arrest.  相似文献   

2.
The order of initiation of floral organs is compared in several legumes. In Bauhinia fassoglensis, a caesalpinioid, the sepals are initiated helically, with the first one forming abaxially. In Genista tinctoria and Lupinus affinis (both papilionoids) the sepals are initiated unidirectionally, with the first forming on the abaxial side of the floral apex and subsequent sepals initiating laterally and then adaxially. All three taxa show unidirectional order of initiation for petals, first-whorl stamens, and second-whorl stamens. In each whorl, the first member or members form on the abaxial side, next to the subtending bract, then the lateral ones, and lastly the member(s) on the adaxial side, next to the axis. In Lupinus and Genista there are overlaps in time of initiation between organs in different whorls; for instance, the first stamens begin initiating before the last petals appear. Size differences among members of a whorl are evident in early stages, but may disappear after organogeny ceases, when the members become equal in size in each whorl. This precocious onset of dorsiventrality in floral development is viewed as a specialized feature.  相似文献   

3.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

4.
The development of the unisexual male and female flowers of Zea mays from bisexual initials in both tassels and ears has been reinvestigated with SEM and TEM. The early stages of spikelet branch primordia, spikelet initiation, and early flower development are similar in both flowers, though differences in rates of growth of glumes, lemmas, and palea were detected. In both tassel and ear flowers, a pair of stamens arises opposite the lemmas and a third stamen initiates later at right angles to the first pair but from a point on the meristem below its insertion. Gynoecia develop on both tassel and ear flowers first as a ridge which overgrows the apical meristem giving rise to the stylar canal and the elongate silk. Male flowers arise in the tassel through selective vacuolation and abortion of the cells of the early gynoecium. The single female flower in each ear spikelet arises through the vacuolation and abortion of stamens in the upper flower and the repression of growth of and the eventual regression of the lower flower in each spikelet. The significance of these selective organ abortions for practical applications is discussed.  相似文献   

5.
The tracheid bar, a strip composed of vertically oriented large tracheid-like cells (tracheoids), occurs only in the hilum of seeds of papilionoid legumes. An anatomical survey of the bar was made from seeds representing 232 species of 97 genera from 29 of the 31 tribes recognized by Polhill. Seeds were sectioned freehand, coated, then viewed by SEM. The tracheid bar is quite uniform in its general features throughout the subfamily, although differences in size and shape of both the bar and the tracheoids were found. Eight species from tribes considered to be among the primitive elements of the subfamily exhibited three variant forms: horizontal tracheary elements instead of the usual bar (2 species), tracheid bar with subtending but separate vascular bundle (1 species), and the tracheid bar with fused horizontal tracheary elements (5 species). Bordered pits of individual cells in the tracheid bar virtually always lacked a membrane and had smooth, warty, or variously elaborate vestures on the border. This appears to be the first report of vestured pits other than in secondary xylem. With some exceptions, bordered pits tended to be vestured in primitive tribes, warty in intermediate tribes, and smooth or only slightly warty in the most advanced tribes.  相似文献   

6.
Ateleia herbert-smithii is unique among legumes in being a wind-pollinated tree; carpellate and staminate flowers are restricted to different trees. Development of the two floral morphs, however, is essentially the same except for smaller carpels in functionally staminate flowers and failure of pollen formation in the anthers of functionally carpellate flowers. The floral development of Ateleia herbert-smithii is highly atypical among papilionoids and the tribe Sophoreae. Order of organ initiation is: sepals, solitary petal, carpel, and lastly all stamens in erratic order. Sepal order is unidirectional from the abaxial side, the normal pattern for papilionoids. Only one petal, the vexillum or standard, is initiated. Subsequent initiation is completely different from the usual unidirectional pattern of most papilionoids. A meristem ring forms, delimiting the solitary carpel centrally. Ten stamen primordia are initiated on the meristem ring, first laterally, then adaxially, and lastly abaxially. There is a tendency for antesepalous stamens to form before the antepetalous ones. The loss of four of the five petals is thought to alter drastically the subsequent organogeny as to position of organs and their order of initiation. Carpel initiation in Ateleia is precocious, but not uniquely so among legumes.  相似文献   

7.
Increase in cell number, and in anlage volume and length have been investigated during the development of lateral root primordia in roots of intact plants of Pisum sativum and Vicia faba and in excised roots of both species cultured in White's medium supplemented with 2% sucrose. With the exception of primordia in excised roots of Vicia, the general equation which best described increase in each aspect of primoridium growth measured against time was that for exponential growth. When the times necessary for cell number and primordium volume and length to double were determined at intervals over the period of development studied, however, they were found to vary. Similarly, estimates of the size of the proliferative fraction of cells at different times during anlage development indicated that this index of meristematic activity also fluctuated over the developmental period investigated, i.e., increase in cell number and in primordium volume and length do not occur in a truly exponential fashion as the primordia increase in size and cell number. One difference between anlage development in the roots of intact plants and in those grown in culture was that whereas the former primordia completed their development and emerged as lateral roots over the period of the investigation, the latter did not. Moreover, cell doubling time and anlage volume and length doubling times were longer, and the proliferation fraction of cells lower, over the whole period of, and at intervals during, primordium development in the excised roots compared with the results obtained for the roots of the corresponding intact plants.  相似文献   

8.
The tribes Amorpheae and Psoraleeae of the Leguminosae (Papilionoidae) share the characteristics of one-seeded fruits and gland-dotted foliage. Because of this, they traditionally have been considered closely related (either a single tribe or two closely related tribes). However, Barneby (1977) has suggested that the Amorpheae and Psoraleeae are not close but previously had been combined on the basis of a superficial resemblance. This paper describes the structure of the secretory cavities responsible for the gland dots. Approximately 50% of the species of each tribe were surveyed for cavity structure with leaflet clearings. Eight species were then chosen for developmental studies of their glands. Several distinct kinds of secretory cavities are present in these plants. Trabeculate cavities (found only in the Psoraleeae) are traversed by many elongated cells. This type of cavity and nontrabeculate cavities of the Psoraleeae initiate with localized dorsiventral elongation of protodermal cells to form a hemispherical protuberance on the leaf primordium surface. Development proceeds with separation of the cells of a protuberance along their lateral walls facing the protuberance center. As the leaf expands, the protuberance sinks until its apex is flush with the leaf surface. The result is a cavity lined by an epithelium of modified epidermal cells. Trabeculate cavities have more cells in the initial protodermal bump than nontrabeculate “epidermal” cavities, and the central cells of the protuberance are not involved in epithelium formation, but become separated from other cells on all lateral sides, transversing the cavity as trabeculae. Cavities of the Amorpheae are all nontrabeculate and subepidermal. They initiate with periclinal divisions of protodermal cells that result in two cell layers. The exterior layer differentiates into epidermis, while the interior layer divides to produce a small spherical group of cells (“epithelial initials”). Schizogeny occurs in the center of these cells to produce an epithelium-lined cavity. Previous studies of cavity development in the Amorpheae described lysigenous and schizo-lysigenous cavities for most species. These early reports are reviewed, and the possible role of preparation artifacts in producing images of lysigenous development in general is discussed.  相似文献   

9.
The pollen brush commonly is referred to as a “bearded” or “pubescent” style in taxonomic literature and traditionally is taken to be an aggregation of trichomes on the distal end of the style, and occasionally including the stigma. We present data that support the taxonomic utility of the pollen brush but define it more specifically as a dense aggregation of erect trichomes emanating from the style (not stigma or ovary) and functioning in secondary pollen presentation. We recommend avoiding such vague terminology as bearded or pubescent styles as these refer not only to the pollen brush but also to ciliate and penicillate stigmas and ciliate styles. The latter three conditions have some taxonomic use, and since their occurrence is not necessarily correlated with the presence of a pollen brush, they should be distinguished from it. We estimate that the pollen brush has arisen independently in the following eight taxa: 1) Crotalaria and Bolusia (Crotalaraieae), 2) subtribe Coluteinae (Galegeae), 3) Tephrosia subgenus Barbistyla (Millettieae), 4) Adenodolichos (Phaseoleae subtribe Cajaninae), 5) Clitoria (Phaseoleae subtribe Clitoriinae), 6) the subtribe Phaseolinae (Phaseoleae), 7) the Robinia group (Robinieae), and 8) the tribe Vicieae. Its hypothesized homology within each of these groups is supported by a cooccurrence with other taxonomic characters, both morphological and molecular.  相似文献   

10.
Exine development in pollen of Caesalpinia japonica was studied using high resolution scanning electron microscopy, with attention to the initial developmental process of protectum formation and composition. The protectum is originated on the protuberant sites of the invaginated plasma membrane during the early tetrad stage. The present study shows that the initial protectum is composed of irregularly oriented fibrous threads. The fibrous threads accumulate and form a network on the plasma membrane. Granules 10–20 nm in diameter gradually aggregate within the network of fibrous threads during the tetrad stage. Subsequently the fibrous threads are almost masked by the granules. The developing protectum has a coarse texture within the callosic tetrad envelope. At the free microspore stage the granular protectum becomes homogeneous. The present study suggests that the protectum consists of an association of fibrous threads and granules. The fibrous threads may function as receptors and/or the skeleton of the developing exine.  相似文献   

11.
A wide range of transitional forms of granular interstitia from simple to complex and from random to ordered occur in the pollen of the subfamily Papilionoideae. Three main types are described: 1) large, widely spaced irregular granules (Type A); 2) densely packed groups of columellae and granules (Type B); and 3) a mass of more or less disorganized granules (Type C). In the genus Calopogonium (tribe Phaseoleae) all three types have been found in different species. Two of the types have been found in different species of the genus Psoralea (tribe Psoraleeae). Granular structures so far occur in six tribes: Desmodieae, Indigofereae, Loteae, Phaseoleae, Psoraleeae, and Vicieae. All of the tribes are regarded as being evolutionarily advanced in both macro and micro characters and many, but not all, show specialized pollen characters. It is concluded that the granular interstitium is a derived structure in papilionoid legumes.  相似文献   

12.
Floral development in Florex and Ottawa cultivars of red clover (Trifolium pratense L.: Leguminosae) was examined by scanning electron microscopy. No differences between the two cultivars were found. The terminal inflorescence is initiated in the axil of the penultimate bract before the final bract is initiated. After initiation of the final bract, the remnant apical dome is transformed to become the least mature part of the inflorescence dome. Subsequent inflorescences are initiated laterally in basipetal sequence. Inflorescence development is zygomorphic. This leads to an unusual pattern of floret initiation, the oldest florets resting basally and proximal to the penultimate bract. Florets develop with zygomorphic symmetry, each whorl of floral organs developing unidirectionally from the abaxial side. Initiation of the adaxial organ of each whorl is delayed until the abaxial organ of the succeeding whorl has been initiated. Thus there is overlapping development of the whorls of organs. The antepetalous stamens arise in close association with their respective petal primordia. As development proceeds, the corolla tube and the staminal tube exhibit basal zonal growth. In the mature flower, above the distal zone of fusion of the keel petals, marginal cells project and interlock, producing a pollination mechanism that can be sprung by the pollinator.  相似文献   

13.
14.
15.
Pea roots have open apical organization, where discrete initial cells do not exist. Differentiation of all tissues occurs in cylinders and vascular sectors that blend gradually with each other. This study reports the distribution of dividing cells and their relationship to maturation events in the 2 mm root tip, and in the 8–10 and 18–20 mm segments. Up to 200 μm from the root body/cap junction, cell division is uniformly distributed throughout all meristem regions. By 350 to 500 μ, xylem tracheary elements and cells of the pith parenchyma and middle cortex have stopped dividing. At this level cell division is almost entirely restricted to two cylinders, one composed of the inner root cap, the epidermis, and the outer cortex (outer cortex cylinder) and another composed of cells of the inner cortex, the pericycle and vascular tissue (inner cortex cylinder). When the protophloem matures, all cells in the phloem sector of the inner cortex cylinder, including the 1 layered pericycle, the endodermis and the phloem parenchyma, stop dividing. The 3–4 layered pericycle in the xylem sectors continues dividing until about 10 mm from the body/cap junction following the maturation of the protoxylem tracheary elements.  相似文献   

16.
利用细胞化学DNA特异染色法——NAMA-Ur特异染色法对豌豆细胞核仁中rDNA的位置及其排布构型进行了原位观察。结果表明,核仁中的rDNA位于纤维中心(FC)以及FC与致密纤维组分的交界处,以环绕FC的形式排布。不同位置的rDNA成分都具有集缩和解集缩两种形态结构,核仁外的核仁伴随染色质经过核仁通道进入核仁,沿FC周边排列,与其中的DNA相连。  相似文献   

17.
Each of the four microsporangia has three or four wall layers, a uninucleate tapetum of various cell shapes with nuclei that remain in prophase, and 12-24 pollen mother cells (PMCs). A sterile transverse septum sometimes bisects the microsporangium. PMCs secrete callose but not uniformly, and contact among them continues through meiosis. Simultaneous cytokinesis by furrowing isolates each microspore in callose, which later disperses. The separated microspores become vacuolate, undergo mitosis to become pollen, and later become filled with food reserves. Endothecial wall thickening and tapetal dissolution occur after pollen engorgement. Calcium oxalate crystals form in tapetal cells during the sporogenous stage, reach maximum size during early meiosis, and remain prominent until tapetal dissolution.  相似文献   

18.
一种多雌蕊小麦花的发生和发育   总被引:6,自引:1,他引:5  
  相似文献   

19.
Scott , Tom K., and Winslow R. Briggs . (Stanford U., Stanford, Calif.) Auxin relationships in the Alaska pea (Pisum sativum). Amer. Jour. Bot. 47(6) : 492–499. Illus. 1960.—The distribution of “free” auxin in the 9-day-old ‘Alaska’ pea epicotyl was determined by short-term ether extraction and by the standard agar diffusion technique. The apical bud appeared to be the only source of “free” auxin. In the upper (growing) internode “free” auxin as determined by diffusion was found to decrease significantly from apex to base, while “free” auxin as determined by extraction remained constant. Below this region, both diffusible and extractable auxin remain constant through one internode and then both decrease simultaneously to the base of the plant. In the growing region, a fraction of diffusible auxin must move from the transport system but remain readily extractable. Upon removal of the apical auxin source all “free” auxin will ultimately be found in the transport system from which it gradually disappears basally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号