首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transverse sections of immature and mature sugarcane internodes were investigated anatomically with white and fluorescence light microscopy. The pattern of lignification and suberization was tested histo-chemically. Lignification began in the xylem of vascular bundles and progressed through the sclerenchymatic bundle sheath into the storage parenchyma. Suberization began in parenchyma cells adjacent to vascular bundle sheaths and spread to the storage parenchyma and outer sheath cells. In mature internodes most of the storage parenchyma was lignified and suberized to a significant degree, except in portions of walls of isolated cells. The pattern of increasing lignification and suberization in maturing internodes more or less paralleled an increase of sucrose in stem tissue. In mature internodes having a high sucrose concentration, the vascular tissue was surrounded by thick-walled, lignified and suberized sclerenchyma cells. The apoplastic tracer dyes triso-dium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) and amido black 10 B, fed into cut ends of the stalk, wereconfined to the vascular bundles in all internodes above the one that was cut — with no dye apparently in storage parenchyma tissue. Thus both structural and experimental evidence is consistent with vascular tissue being increasingly isolated from the storage parenchyma as maturation of the tissue proceeds. We conclude that in mature internodes the pathway for sugars from the phloem to the storage parenchyma is symplastic. The data suggest that an increasingly greater role for a symplastic pathway of sugar transfer occurs as the tissue undergoes lignification/suberization.  相似文献   

2.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

3.
木立芦荟叶内维管束发育过程的研究   总被引:3,自引:0,他引:3  
采用半薄切片和组织化学方法研究了木立芦荟(Aloe arhorescetzs)叶内维管束的发育过程,并着重于维管束鞘细胞和芦荟素细胞的来源及组织类型。结果表明:维管束由原形成层发育而来,但在分化原生韧皮部筛管时,其外侧仍保留一层原形成层细胞,以后分裂、增大成为特殊的大型薄壁细胞(芦荟素细胞),芦荟索细胞啦属于韧皮部的一部分。而维管束鞘细胞则来源于基本分生组织,属于基本组织的范畴,与维管束不同源。  相似文献   

4.
Leaves of the Princeton and a variegated clone of Coleus blumei Benth. were examined with the light microscope to determine the course of their vasculature and the spatial relationship between the mesophyll, bundle sheath, and vascular tissues. In Princeton clone leaves two leaf traces enter the petiole at the node and quickly branch to form an arc of bundles which undergo further divisions as well as fusions in the distal half of the petiole. The anastomosing arc of bundles reaches its greatest complexity in the base of the midvein, where its lateral-most bundles unite and diverge outward to form secondary veins. As the midvein bundles continue acropetally, they gradually fuse more and divide less until only a single bundle remains, from which secondaries and smaller veins branch. Major (ribbed) veins include not only the midvein and secondaries but also tertiary and quaternary veins. Decreasing vein size is accompanied by increasing direct contact between vascular and photosynthetic tissues. Minor veins, which make up 86% of the total vein length, are completely surrounded by photosynthetic bundle sheaths and mesophyll consisting of palisade and spongy parenchyma. Statoliths occur in a layer of cells just outside the phloem of the petiole-midrib axis and secondary veins. Functional hydathodes are present at the apices of the marginal teeth. The overall organization of tissues in variegated leaves differs little in either the green or albuminous areas from corresponding (but always green) regions of Princeton leaves. Chloroplasts are lacking in mesophyll, bundle-sheath, and most guard cells of the albuminous region but are present in guard cells which are within 1 mm of green areas.  相似文献   

5.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:3,自引:0,他引:3  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1-2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

6.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:11,自引:0,他引:11  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1—2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

7.
甘蔗叶不同部位ATP酶活性细胞化学定位   总被引:5,自引:0,他引:5  
甘蔗叶片,叶鞘和肥厚带韧皮部 ATP 酶活性定位于筛管、伴胞的质膜、内质网和某些伴胞细胞基质、小囊泡和发育成熟的液泡上;叶片韧皮部薄壁细胞、厚壁细胞和厚壁通道细胞质膜及小囊泡中亦显示有 ATP 水解产物;维管束鞘细咆与厚壁细胞或厚壁通道细胞所构成的细胞间隙上也存在有 ATP 酶活性反应产物沉淀。甘蔗叶片大、中、小三种维管束,从小维管束到大维管束,面向细胞间隙的细胞表面上的 ATP 酶活性逐渐增强,而维管束鞘细胞质膜上的 ATP 酶活性则趋于减弱;同一维管束内则以韧皮部细胞的 ATP 酶活性最强。维管束鞘细胞与叶肉细胞之间存在很多的胞间连丝,并表现出高的 ATP 酶活性。讨论了 ATP 酶活性的分布状态与叶肉细胞的光合产物向韧皮部运输的关系。  相似文献   

8.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

9.
W. Eschrich  J. Fromm  R. F. Evert 《Protoplasma》1992,167(3-4):145-151
Summary For the histochemical localization of nucleoside triphosphatases at the electron microscopic level, prefixed tissues were incubated with lead nitrate in addition to substrate (GOMORI reaction). While ATP and UTP as substrates gave electron-dense reaction products at the plasmalemma of sieve tubes, companion cells and phloem parenchyma cells, and at plasmodesmata in primary pitfields, AMP gave reaction products only at the tonoplast of parenchyma cells. Since electron-dense deposits also occur in cell walls and vacuoles, energy dispersive X-ray microanalysis was used to distinguish between lead deposits and lead-phosphate deposits. The latter were restricted to the symplast. Among the three plant species used, the leaf bundle phloem ofHordeum distichon showed ATPase activity largely restricted to the phloem cells, except for the thickwalled sieve tubes. Some activity also bordered the chloroplasts of the bundle sheath cells. In the C4 plantGomphrena globosa, ATPase and UTPase activities appeared to be the greater in phloem parenchyma cells than in sieve tubes. In the phloem of youngMonstera deliciosa roots, ATPase occurred not only at the plasmalemma of sieve tubes, but also around sieve-tube plastids. When compared with AMP as substrate, it appears that nucleoside triphosphates are the natural substrates of the enzyme(s) in the plasmalemma of sieve tubes and phloem parenchyma cells.  相似文献   

10.
应用半薄切片法、高效液相色谱法(HPLC)和荧光显微镜研究了6种芦荟叶的结构、芦荟素的含量和储藏芦荟素的组织.结果表明,6种芦荟叶均由表皮、光合组织、储水组织和维管束组成,都表现出明显的旱生植物肉质叶的结构特征,表皮由一层扁平的细胞组成,其外壁加厚,并覆盖着厚的角质膜,气孔器凹陷,储水组织发达.6 种芦荟叶的结构存在显著差异.木立芦荟(Aloe arborescens Mill.)和易变芦荟(A. mutabilis Pillans)的光合组织细胞呈长柱状,类似栅栏薄壁组织.中华芦荟(A. vera L. var. chinensis Berg.)、库拉索芦荟(A. vera L.)、皂叶芦荟(A. saponaria Hawer)和绿芦荟(A. greenii Bak.)则为等直径薄壁细胞.木立芦荟、中华芦荟、易变芦荟和库拉索芦荟的维管束中有大型薄壁细胞,皂叶芦荟和绿芦荟的维管束中无大型薄壁细胞.木立芦荟、易变芦荟和库拉索芦荟在光合组织和储水组织之间有一层不含叶绿体的小型薄壁细胞,包围着储水薄壁组织,称之为储水组织鞘.中华芦荟、皂叶芦荟和绿芦荟则没有储水组织鞘.HPLC测量结果表明,木立芦荟叶芦荟素含量最高,库拉索芦荟和易变芦荟次之,中华芦荟、皂叶芦荟和绿芦荟含量最低.荧光显微镜观察结果表明,在紫外光和蓝光下,黄色和黄绿色小球体仅存在于维管束的大型薄壁细胞、维管束鞘和储水组织鞘中,而光合组织和储水组织中没有黄色和黄绿色小球体.因此,维管束中大型薄壁细胞、维管束鞘和储水组织鞘是芦荟素等蒽醌类物质的储藏场所.综上所述,芦荟素含量与维管束的大型薄壁细胞、维管束鞘和储水组织鞘的情况密切相关.  相似文献   

11.
六种芦荟叶的解剖结构及其与芦荟素含量的相关性   总被引:10,自引:0,他引:10  
应用半薄切片法、高效液相色谱法(HPLC)和荧光显微镜研究了6种芦荟叶的结构、芦荟素的含量和储藏芦荟素的组织。结果表明,6种芦荟叶均由表皮、光合组织、储水组织和维管束组成,都表现出明显的旱生植物肉质叶的结构特征,表皮由一层扁平的细胞组成,其外壁加厚,并覆盖着厚的角质膜,气孔器凹陷,储水组织发达。6种芦荟叶的结构存在显著差异。木立芦荟(Aloe arborescens Mill.)和易变芦荟(A.mutabilis Pillans)的光合组织细胞呈长柱状,类似栅栏薄壁组织。中华芦荟(A.vera L.var.chinensis Berg.)、库拉索芦荟(A.vera L.)、皂叶芦荟(A.saponaria Hawer)和绿芦荟(A.greenii Bak.)则为等直径薄壁细胞。木立芦荟、中华芦荟、易变芦荟和库拉索芦荟的维管束中有大型薄壁细胞,皂叶芦荟和绿芦荟的维管束中无大型薄壁细胞。木立芦荟、易变芦荟和库拉索芦荟在光合组织和储水组织之间有一层不含叶绿体的小型薄壁细胞,包围着储水薄壁组织,称之为储水组织鞘。中华芦荟、皂叶芦荟和绿芦荟则没有储水组织鞘。HPLC测量结果表明,木立芦荟叶芦荟素含量最高,库拉索芦荟和易变芦荟次之,中华芦荟、皂叶芦荟和绿芦荟含量最低。荧光显微镜观察结果表明,在紫外光和蓝光下,黄色和黄绿色小球体仅存在于维管束的大型薄壁细胞、维管束鞘和储水组织鞘中,而光合组织和储水组织中没有黄色和黄绿色小球体。因此,维管束中大型薄壁细胞、维管束鞘和储水组织鞘是芦荟素等蒽醌类物质的储藏场所。综上所述,芦荟素含量与维管束的大型薄壁细胞、维管束鞘和储水组织鞘的情况密切相关。  相似文献   

12.
盾叶薯蓣根状茎的发育解剖学和组织化学研究   总被引:10,自引:0,他引:10  
盾叶薯蓣根状茎顶端的生长点由鳞片包被,其衍生细胞分化为原表皮、基本分生组织和散生的原形成层束,以后分化为表皮、基本组织和散生的维管束构成的初生结构。根状茎顶端下方的原表皮内存在初生增厚分生组织,其细胞不断向内分裂和其衍生细胞的体积增大使根状茎能够迅速增粗。分化完成的根状茎主要由周皮、基本组织和散生的维管束构成。周皮由木栓层、木栓形成层和栓内层组成;基本组织由薄壁细胞组成;维管束属于有限维管束。薯蓣皂甙主要存在于基本组织薄壁细胞中。原分生组织和原形成层不含薯蓣皂甙,维管束的木质部和韧皮部中的韧皮纤维也无薯蓣皂甙的分布,韧皮部的生活细胞和维管束鞘细胞有薯蓣皂甙的积累。近顶端的基本分生组织细胞内薯蓣皂甙不形成液滴,随着细胞分裂逐渐停止,细胞内开始形成含薯蓣皂甙的液滴,反映皂甙是在成熟细胞内积累。其中,有小型维管束分布的基本组织中薯蓣皂甙的积累与分布最丰富,两年生根状茎中薯蓣皂甙的含量比一年生的高。  相似文献   

13.
Seedlings of an inbred line of male-fertile corn possessing the gene rhm for resistance to Southern corn leaf blight were inoculated with conidia of Helminthosporium maydis race O. Histological observations at 1 day revealed that lesions were comprised of several dead mesophyll cells bordered by a pair of vascular bundles. By 4 days, lesions had only spread to a width of three vascular bundles. Ultrastructural observations revealed that although mesophyll cells degenerated at an early stage, bundle sheath and phloem cells remained intact even in 4-day-old lesions. It appears that the gene rhm imparts a resistance to bundle sheath and phloem cells against toxic substances released by the fungus. Addition key words: Zea mays L., ultrastructure, gene rhm, Southern corn leaf blight.  相似文献   

14.
Examination of Aloe leaf sections revealed the presence of three types of cells at the phloem pole of the vascular bundles, aloin cells, outer bundle sheath cells and fibres. Three species contain fibres alone and produce a sparse exudate with few components staining purple with Fast Blue B on thin-layer chromatograms. The majority of species have aloin cells of various sizes and in the tetraploid species these produce a copious exudate containing anthraquinone and chromone derivatives. It is suggested that the aloin cells act as storage tissue and that the compounds are synthesized in the surrounding layer of cells of smaller diameter, many of which can be seen to contain globules of unknown constitution. Anatomical observations support the idea that the shrubby tetraploid Aloe species are derived from a form similar to the diploid Aloe morijensis. Two forms of this species have been described, one with fibres only and few exudate components and another with both fibres and aloin cells and an exudate containing compounds of the tetraploid species. A line of diploid plants similar in anatomy and chemistry to the first form is represented by A. fibrosa and A. babatiensis while a line of tetraploids with affinities to the second form is represented by A. nyeriensis, A. cheranganiensis, A. elgonica, A. dawei and A.yavellana.  相似文献   

15.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

16.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

17.
木立芦荟叶的发育解剖学研究   总被引:5,自引:0,他引:5  
应用植物解剖学方法研究了木立芦荟(Aloe arborescens Mill.)叶的发育过程。研究结果表明,叶原基在发育早期其形态是不对称的,内部为同形细胞组成,但很快分化成原表皮,原形成层束和基本分生组织。以后,原表皮发育成表皮,位于原表皮下的2-5层基本分生组织细胞发民同化薄壁组织,而位于中央的基本分生组织细胞则发育成储水薄壁组织,原形成层束发育成维管束。维管束由维管束鞘、木质部、韧皮部和大型薄壁细胞组成。大型薄壁细胞起源于原形成层束,位于韧皮部内,其发育迟于筛管、伴胞,为芦荟属植物叶的结构特征。  相似文献   

18.
We investigated the function of the auxin-regulated cell wall gene DC 2.15, a member of a small gene family, present in Daucus carota (L.) and other plants. Cultured cells derived from carrot hypocotyls transformed by the DC 2.15 cDNA in antisense direction were ten-fold longer than wild-type cells, indicating a function of the corresponding protein in suppression of cell expansion. The analysis of carrot plants expressing the DC 2.15 gene in antisense direction showed that the corresponding protein and/or related proteins probably are involved in leaf and vascular bundle development. The antisense plants generally displayed a retarded growth phenotype and delayed greening in comparison to wild-type plants. The asymmetric architecture of the wild-type leaves was degenerated in the DC 2.15 antisense plants and the leaves showed a torsion within and along their major vein. The vascular bundles showed a lowered ratio of the phloem/xylem area in cross sections of the leaf middle vein whereas the bundle sheath and the cambium showed no obvious phenotype. Expression of a promoter-GUS construct was found primarily in vascular bundles of stems, leaves and in the nectar-producing flower discs. The observed pleiotropic antisense phenotype indicates, by loss of function, that one or several related cell wall proteins of this gene family are necessary to realize several complex developmental processes.  相似文献   

19.
Ku SB  Shieh YJ  Reger BJ  Black CC 《Plant physiology》1981,68(5):1073-1080
The succulent, cylindrical leaves of the C4 dicot Portulaca grandiflora possess three distinct green cell types: bundle sheath cells (BSC) in radial arrangement around the vascular bundles; mesophyll cells (MC) in an outer layer adjacent to the BSC; and water storage cells (WSC) in the leaf center. Unlike typical Kranz leaf anatomy, the MC do not surround the bundle sheath tissue but occur only in the area between the bundle sheath and the epidermis. Intercellular localization of photosynthetic enzymes was characterized using protoplasts isolated enzymatically from all three green cell types.  相似文献   

20.
Low CO2 compensation points have been found to be associated with several unusual characteristics related to photosynthesis. One such characteristic is a prominent, chlorenchymatous vascular bundle sheath in the leaves. It has been suggested that the presence of this sheath in dicotyledons can serve as a means of detecting low CO2-compensating species. We collected 88 dicotyledon species from 22 families reported to have chlorenchymatous sheaths. Of the 88, only three, Tribulus terrestris, L., Boerhaavia paniculata, L. C. Rich, and Trianthema portulacastrum L., had low CO2 compensation points. Cross sections of the leaves of the other species revealed that they did have chlorenchymatous vascular bundle sheaths. However, these sheath cells contained chloroplasts which were not specialized for starch formation as were the bundle sheath chloroplasts of the low CO2-compensating species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号