首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to sex allocation theory, to maintain a mutant male-sterile plant in a population of hermaphrodites such a plant must compensate its loss of fitness caused by inhibition of pollen production with a higher reproductive success through its female function. In the present study of a gynodioecious population of Silene vulgaris (Caryophyllaceae) I show that hermaphrodites not only benefit from outcrossing, in that progeny from outcrossed flowers are more vigorous than those from selfed flowers within an individual plant, but they also suffer heavily from self-pollination between different flowers of the same individuals, which could be demonstrated in experimentally made male-sterile (emasculated) individuals. Seeds from the emasculation period were heavier and germinated better than when the same individual was an intact hermaphrodite. Naturally male-sterile (female) individuals produced more fruits due to flowers staying open longer for pollen to arrive via some vector. However, the higher seed number alone could not provide the fitness advantage needed for females to be maintained in the population, but females also produced heavier seeds as compared to the hermaphrodites. Differences in seed survival and seedling establishment in the field are expected to add the advantages necessary for female plants to be selectively plausible.  相似文献   

2.
We estimated rates of self-fertilization and inbreeding depression in the hermaphroditic perennial Arabis fecunda. Crosses were made on mesh-bagged wild plants, yielding 12 plants producing self-, outcross-, and naturally fertilized seeds that were then grown in a greenhouse. Analysis of variance indicated aboveground dry weight at 160 days differed among pollination treatments, but mean seed weight, number of seeds per fruit, and days to germination did not. For dry weight, selfed progeny have 9.4% reduction and naturally pollinated progeny a 3.7% reduction compared to outcrossed progeny, suggesting a 39% selling rate in Arabis. Significant inbreeding depression and a mixed mating system are evidence that the deleterious effects of self-fertilization are maintained through high rates of mildly deleterious mutation. Significant maternal-parent-by-pollination-treatment interactions for mean seed weight and dry weight are consistent with inbreeding depression caused by deleterious recessives and varying past maternal inbreeding.  相似文献   

3.
We studied seed germination and the growth and survivorship of seedlings of females and hermaphrodites ofPachycereus pringlei (cardon), a Mexican columnar cactus whose geographically variable breeding system includes trioecy and gynodioecy. Results of a two-year field experiment conducted near Bahia Kino, Sonora, Mexico and a ten-month laboratory experiment were similar and did not support the hypothesis that seedlings of females outperform those of hermaphrodites. In the field, percent seed germination and 2-yr seedling survivorship averaged 66% and 95%, respectively and did not differ among six treatment classes. Seedlings of hermaphrodites generally were larger than those of females at the end of both experiments. Selfed seedlings of hermaphrodites did not grow more slowly than outcrossed seedlings of hermaphrodites or females. Hermaphrodite seedlings performed best when pollinated with hermaphrodite pollen; female seedlings performed best with male pollen. We conclude that superior seedling performance cannot explain why females are able to coexist with hermaphrodites in populations of this cactus. Instead, we postulate that greater annual seed production, which averaged 1.6 times higher in females than in hermaphrodites in two years, may be sufficient to allow females to co-occur with hermaphrodites in this large, longlived plant, especially if sex determination involves cytoplasmic-nuclear inheritance.  相似文献   

4.
In gynodioecious species, which contain females and hermaphrodites, the outcrossed seeds of females have been found to outperform the outcrossed seeds of hermaphrodites, in spite of the fact that their seeds are not larger in mass. Females do not make pollen. Hence the nutrients that hermaphrodites allocate to pollen, such as nitrogen, might be allocated to seeds by the females, such that individual seeds from females are better provisioned than those from hermaphrodites. Alternatively, females might make more seeds, rather than better provisioned seeds. We tested the hypothesis that seeds from females would be better provisioned for the gynodioecious species Silene acaulis, by comparing seed mass, embryo/endosperm mass, nitrogen and phosphorus content, and energy content for outcrossed seeds from females and hermaphrodites produced in a natural population. We also measured the proportion of flowers that set fruit in both morphs. Seeds from the two sexual morphs were not found to differ significantly for any of the measures of seed provisioning, with seeds from females containing either nonsignificantly less or equivalent amounts of each of the measures as compared to hermaphrodites. However, females set a significantly higher proportion of their flowers to fruit, as compared to hermaphrodites. These results indicate that females do not provision individual seeds more than hermaphrodites in S. acaulis, and alternative hypotheses will need to be examined to explain the difference in the performance of the seeds from the two sexual morphs.  相似文献   

5.
The evolution of separate sexes as a means of avoiding self-fertilization requires the controversial coexistence of large inbreeding depression and high selfing rate in the ancestral hermaphrodite population. Fitness components of adult females and hermaphrodites in nature, of their open-pollinated progeny, and of experimental selfs and outcrosses onto hermaphrodites were compared in endemic Hawaiian Bidens sandvicensis, all of whose known populations are gynodioecious, consisting of a mixture of females and hermaphrodites. Multilocus selfing rates of hermaphrodites were also estimated, and sex morph ratio monitored over four seasons in three populations of B. sandvicensis and one population of gynodioecious B. cervicata. Total mean inbreeding depression in seed set (in the glasshouse), germination rate (in an open-air nursery on Kauai), and first year survivorship and fecundity in the field were estimated as 0.94 (SE 0.04), and occurred primarily in drought months. Lower survivorship and fecundity of selfs were partially explained by their consistently smaller size. Open-pollinated seed of females had significantly lower germination rate, proportion flowering, and fecundity than outcrossed progeny of hermaphrodites, suggesting moderate biparental inbreeding in females and a lack of any non-outcrossing advantage to progeny of females. In all fitness components, open-pollinated progeny of hermaphrodites were inferior to those of females and to outcrosses, and in most components were superior to selfs. Total performance of open-pollinated progeny of females relative to those of hermaphrodites was calculated as 2.3 (SE = 0.4), but since inflorescences of females also set 20% to 50% more seed than those of hermaphrodites, their total relative ovule success was estimated as 3.2 (SE = 0.5). If inheritance of male sterility is nuclear, this superiority is sufficient to maintain females in frequencies over 20% in populations, whose actual frequencies ranged from 14% to 33%. In four populations, selfing rates of hermaphrodites, assayed in seedlings, were 0.50, 0.45, 0.25, and 0.30, but since substantial inbreeding depression occurred prior to germination, the mean selfing rate of hermaphrodite ovules exceeded 0.57. Female frequencies were significantly higher in the two populations with higher hermaphrodite selfing rate. These results suggest that inbreeding depression can exert a profound influence on the mating system of self-compatible plants on Hawaii and perhaps other oceanic islands, and can be sufficiently strong to electively favor the elimination of the male function.  相似文献   

6.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

7.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

8.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

9.
In plant species producing non‐dormant seeds, the germination time (from the start of imbibition to radicle emergence) is the main factor determining the timing of seedling emergence. We investigated maternal and paternal genetic effects on the germination time of non‐dormant seeds of a monocarpic perennial, Aster kantoensis Kitamura (Compositae). Three sets of reciprocal diallel crosses among five plants were conducted to produce genetic variation in seeds, and the germination time of the progeny of each parent was determined. The effects of the maternal parent and the interaction of maternal and paternal parents on the germination time of progeny were significant in all sets, and the effect of the paternal parent was significant in two of the three sets. This result means that the germination time of the progeny of a maternal or paternal parent can vary with the genotype of its mating partners. Because variation in the emergence time of seedlings contributes to avoiding seedling loss owing to unpredictable environmental changes, genetic variation in the germination time among the progeny of each parent mating with multiple partners could contribute to the establishment of the parent's seedlings in species producing non‐dormant seeds in the field.  相似文献   

10.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   

11.
In many gynodioecious species cross-pollinated seeds from females outperform those from hermaphrodites. Using the gynodioecious alpine perennial Silene acaulis, I investigated whether this was the result of greater biparental inbreeding among hermaphrodites leading to greater biparental inbreeding depression. I also determined the influence of relatedness on progeny fitness. Experiments were performed using individuals from a site whose population structure and coefficient of inbreeding was known. In the first experiment, crosses were made on plants in the field to determine the effect of seven different crossing distances, plus selfing, on germination and early seedling survival and growth. Although selfed seeds died more often and grew slower than crossed seeds, the effect of crossing distance was negligible for all measured fitness traits, refuting the biparental inbreeding hypothesis as a mechanism to explain why seeds from hermaphrodites die more often than those from females. Nonetheless, cross-pollinated seeds from hermaphrodites did die more, indicating that another mechanism must be responsible. In the second experiment, the effect of different levels of inbreeding on germination and seedling survival was determined by growing seeds from experimental matings varying in relatedness. Inbreeding depression for a multiplicative fitness estimate was significant for all levels of inbreeding, suggesting that inbred individuals are unlikely to become established in the population and providing insight into the results of the first experiment. Alternative hypotheses are discussed to explain why seeds from hermaphrodites die more often, which together with the results of this study, suggest that the restoration of male function in hermaphrodites comes with a correlated cost to seedling survival.  相似文献   

12.
Little is known about the breeding systems of perennial Lupinus species. We provide information about the breeding system of the perennial yellow bush lupine, Lupinus arboreus, specifically determining self-compatibility, outcrossing rate, and level of inbreeding depression. Flowers are self-compatible, but autonomous self-fertilization rarely occurs; thus selfed seed are a product of facilitated selfing. Based on four isozyme loci from 34 maternal progeny arrays of seeds we estimated an outcrossing rate of 0.78. However, when we accounted for differential maturation of selfed seeds, the outcrossing rate at fertilization was lower, ~0.64. Fitness and inbreeding depression of 11 selfed and outcrossed families were measured at four stages: seed maturation, seedling emergence, seedling survivorship, and growth at 12 wk. Cumulative inbreeding depression across all four life stages averaged 0.59, although variation existed between families for the magnitude of inbreeding depression. Inbreeding depression was not manifest uniformly across all four life stages. Outcrossed flowers produced twice as many seeds as selfed flowers, but the mean performance of selfed and outcrossed progeny was not different for emergence, seedling survivorship, and size at 12 wk. Counter to assumptions about this species, L. arboreus is both self-compatible and outcrosses ~78% of the time.  相似文献   

13.

Background and Aims

Gynodioecy (coexistence of females and hermaphrodites) is a sexual system that occurs in numerous flowering plant lineages. Thus, understanding the features that affect its maintenance has wide importance. Models predict that females must have a seed fitness advantage over hermaphrodites, and this may be achieved via seed quality or quantity. Females in a population of Fragaria vesca subsp. bracteata, a long-lived gynodioecious perennial, do not demonstrate a seed quantity advantage, so this study explored whether females produced better quality seed via maternal sex effects or avoidance of inbreeding depression (IBD).

Methods

Families of selfed and outcrossed seed were created using hermaphrodite mothers and families of outcrossed seed were created using female mothers. The effects of these pollination treatments were assessed under benign conditions early in life and under varied conditions later in life. To test for an effect of maternal sex, fitness components and traits associated with acclimation to variable environments of progeny of outbred hermaphrodites and females were compared. To test for expression of IBD, fitness parameters between inbred and outbred progeny of hermaphrodites were compared.

Key Results

Offspring of females were more likely to germinate in benign conditions and survive in harsh resource environments than outbred progeny of hermaphrodites. IBD was low across most life stages, and both the effect of maternal sex on progeny quality and the expression of IBD depended on both maternal family and resource condition of the progeny.

Conclusions

The effect of maternal sex and IBD on progeny quality depended on resource conditions, maternal lineage and progeny life stage. In conjunction with known lack of differences in seed quantity, the quality advantages and IBD observed here are still unlikely to be sufficient for maintenance of gynodioecy under nuclear inheritance of male sterility.  相似文献   

14.
In gynodioecious plants, seed offspring from hermaphrodites often perform less well than those from females. This lower performance sometimes can be attributed to inbreeding by hermaphrodites or to relatively greater provisioning of individual seeds by females. However, these hypotheses are not explanatory when only outcrossing occurs and when individual seeds of the two morphs are equally well provisioned. Three hypotheses may explain the lower fitness of seed offspring from hermaphrodites in such cases. The morphology hypothesis states that the opportunity for gametophytic selection is lower within flowers of hermaphrodites compared to flowers on females, because the perfect flowers of hermaphrodites are relatively short-styled. The cytotype hypothesis states that the performance difference is directly caused by an individual's cytotype, whose frequency in the population may differ for the two sex morphs. The pleiotropy hypothesis states that negative pleiotropic effects of nuclear restorer alleles or alleles hitchhiking with them are expressed more often by offspring from hermaphrodites. We performed two experiments using the gynodioecious plant Silene acaulis to contrast these hypotheses. In our first experiment we contrasted the morphology and pleiotropy hypotheses by performing controlled pollinations and subsequently planting seeds in both the greenhouse and field. Hermaphrodites of S. acaulis can produce both pistillate and perfect flowers, which allowed us to determine whether flower morphology affects offspring survivorship independent of the sex of the maternal parent. We found that neither seed mass nor germination differed between seeds from females and hermaphrodites. Offspring from pistillate flowers on hermaphrodites did not differ significantly in their survival compared to offspring from perfect flowers on hermaphrodites, but had lower survivorship compared to offspring from pistillate flowers on females, refuting the morphology hypothesis. In a second experiment, we compared offspring survival of full-sibling pairs of females and hermaphrodites (who shared the same cytoplasm) to contrast the cytotype and pleiotropy hypotheses. We found that seed offspring from females and hermaphrodites that shared the same cytoplasm differed in their survival, which is counter to the prediction of the cytotype hypothesis. In both experiments, the sex of the maternal parent significantly affected offspring survival, with seed offspring from hermaphrodites surviving less well than those from females. These results support the pleiotropy hypothesis. We conclude by discussing alternative ways of thinking about negative pleiotropic effects of nuclear restorers or "the cost of restoration."  相似文献   

15.
Eritrichum aretioides is a gynodioecious species with female and hermaphrodite individuals. In populations on Pennsylvania Mountain in central Colorado (USA), the frequency of females ranges from 22 to 41%. Flower number and the number of seeds produced per flower were similar in hermaphrodites and females. However, hermaphrodites produced larger flowers, while females produced larger seeds (P < 0.05 for both). In the field, seed germination was higher for seeds from females than for seeds from hermaphrodites (20 vs. 9% germination; P < 0.05). Unvisited flowers and open-pollinated flowers of hermaphrodites had similar pollen receipt (approx 20 pollen grains per stigma), but seed set following autogamous pollination was significantly lower than seed set following natural pollination. This finding indicates that hermaphrodites have a barrier to selfing and implies that the larger seed size and greater establishment advantage of offspring from females is unlikely to have resulted from female outcrossing advantage. Rather, differences in the quality of seed progeny between morphs probably reflect a trade-off in sexual allocation or pleiotropic effects of the sex-determining genes.  相似文献   

16.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

17.
We evaluated the degree of selfing and inbreeding depression at the seed and seedling stages of a threatened tropical canopy tree, Neobalanocarpus heimii, using microsatellite markers. Selection resulted in an overall decrease in the level of surviving selfed progeny from seeds to established seedlings, indicating inbreeding depression during seedling establishment. Mean seed mass of selfed progeny was lower than that of outcrossed progeny. Since the smaller seeds suffered a fitness disadvantage at germination in N. heimii, the reduced seed mass of selfed progeny would be one of the determinants of the observed inbreeding depression during seedling establishment. High selfing rates in some mother trees could be attributed to low local densities of reproductive individuals, thus maintenance of a sufficiently high density of mature N. heimii should facilitate regeneration and conservation of the species.  相似文献   

18.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

19.
To examine the breeding system and components of male and female reproductive success in the hermaphroditic plant Lobelia cardinalis, we performed three crossing experiments with plants taken from natural populations. The experiments were designed to determine if the crossing success of plants as pollen and ovule parents was affected by the distance among mates, including self-pollinations and pollinations between populations; to determine if plants differed in their abilities to sire or mature seed; and to determine if there was a correlation between a plant's success at siring and maturing seed. Selfpollinations resulted in significantly fewer seeds per fruit and significantly smaller seeds. There were no significant differences in germinability between selfed and outcrossed seeds. Distance among parents within a population did not affect any of the traits. Outcrosses within and between population produced similar numbers of seeds per fruit, similar seed weights, and similar germination success. There were highly significant differences among maternal plants in all three experiments in the number of seeds they matured, mean seed weight, and seed germinability. The maternal parent was the most important factor determining seed production, but there were also significant differences among paternal plants in the number of seeds they sired (all three experiments), in the germinability of the seeds they sired (two experiments), and in the sizes of seeds they sired (one experiment). Our results indicate that differences in success of Lobelia plants as male parents cannot be due solely to their relatedness to the female parent.  相似文献   

20.
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号