首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

4.
Rhizobium fredii USDA257 fails to nodulate the improved soybean [Glycine max (L.)Merr.] cultivar McCall in plastic growth pouches. Mutant 257DH4, which was derived from USDA257 by transposon mutagenesis, forms nitrogen fixing nodules under these conditions. If USDA257 is present in inocula containing the mutant, most infections are arrested prior to organization of the nodule meristem, and nodule number is reduced by 95%. The improved cultivars Essex, Harosoy, Hodgson 78, and Viçoja, as well as a supernodulating mutant of Williams, respond like McCall to inoculation with such mixtures of bacteria. Nodulation blocking on McCall can be elicited by rhizobia other than USDA257, provided that they meet two criteria: Blocking strains must themselves be able to induce cortical cells of McCall to divide, and such divisions must proceed to the stage of nodule meristem formation. Nodulation by the mutant remains sensitive to a challenge inoculation with USDA257 for only the first 6 to 12 hours after inoculation. Nodulation blocking involving mutant 257DH4 thus appears to be a rapid, generalized process.  相似文献   

5.
Sinorhizobium fredii USDA257 employs type III secretion system (T3SS) to deliver effector proteins into the host cells through pili. The nopA protein is the major component of USDA257 pili. The promoter region of USDA257 nopA possesses a well conserved tts box. Serial deletion analysis revealed that the tts box is absolutely essential for flavonoid induction of nopA. Deletion of nopA drastically lowered the number of nodules formed by USDA257 on cowpea and soybean cultivar Peking. In contrast to the parental strain, the USDA257 nopA mutant was able to form few nodules on soybean cultivars McCall and Williams 82. Light and transmission electron microscopy examination of these nodules revealed numerous starch grains both in the infected and uninfected cells.  相似文献   

6.
Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean roots, these two rhizobia secrete nodulation outer proteins (Nop) to the extracellular milieu through a type III secretion system. In spite of the fact that Nops are known to regulate legume nodulation in a host-specific manner, very little is known about the differences in the compositions of Nops and surface appendages elaborated by USDA191 and USDA257. In this study we compared the Nop profiles of USDA191 and USDA257 by one-dimensional (1D) and 2D gel electrophoresis and identified several of these proteins by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS). Examination of the surface appendages elaborated by these two strains of soybean symbionts by transmission electron microscopy revealed distinct differences in their morphologies. Even though the flagella produced by USDA191 and USDA257 were similar in their morphologies, they differed in their flagellin composition. USDA257 pili resembled long thin filaments, while USDA191 pili were short, rod shaped, and much thinner than the flagella. 2D gel electrophoresis of pilus-like appendages of USDA191 and USDA257 followed by mass spectrometry resulted in the identification of several of the Nops along with some proteins previously undetected in these strains. Some of the newly identified proteins show homology to putative zinc protease and a LabA-like protein from Bradyrhizobium sp. ORS278, fimbrial type 4 assembly proteins from Ralstonia solanacearum, and the type III effector Hrp-dependent protein from Rhizobium leguminosarum bv. trifolii.  相似文献   

7.
Heron DS  Pueppke SG 《Plant physiology》1987,84(4):1391-1396
Double inoculation (15 h apart) of the soybean cultivar Williams with Bradyrhizobium japonicum I-110ARS reveals a rapid regulatory plant response that inhibits nodulation of distal portions of the primary root (M Pierce, WD Bauer 1984 Plant Physiol 73: 286-290). Only living, homologous rhizobia elicit the response. We conducted similar double inoculation experiments to test the hypothesis that this is a universal phenomenon in soybean symbioses. We investigated interactions of the cultivar McCall with the slow-growing strain Bradyrhizobium sp. 3185 (=3G4b16) and strains of the fast-growing soybean symbiont, Rhizobium fredii (USDA191 [Nod+ on McCall] and USDA257 [Nod on McCall]). Nodulation was not detectably inhibited when USDA257 was included in various combinations with an inoculum of USDA191. Strain USDA257 cohabited nodules with strain USDA191 when plants were inoculated sequentially with both strains, but USDA257 did not nodulate McCall when a sterile culture filtrate of USDA191 was added to USDA257 inoculum. There was only a slight inhibition of nodulation of distal portions of the primary root in double inoculation experiments with McCall and strain 3185. Because these results were unexpected, we repeated the experiments with Williams and strain I-110ARS. The response was similar to that observed in the McCall × 3185 interaction. Regulation of nodulation on the primary root thus appears to be variable and depend on strain X cultivar interactions.  相似文献   

8.
Nodulation, acetylene reduction activity, dry matter accumulation, and total nitrogen accumulation by nodulated plants growing in a nitrogen-free culture system were used to compare the symbiotic effectiveness of the fast-growing Rhizobium fredii USDA 191 with that of the slow-growing Bradyrhizobium japonicum USDA 110 in symbiosis with five soybean (Glycine max (L.) Merr.) cultivars. Measurement of the amount of nitrogen accumulated during a 20-day period of vegetative growth (28 to 48 days after transplanting) showed that USDA 110 fixed 3.7, 39.1, 4.6, and 57.3 times more N2 than did USDA 191 with cultivars Pickett 71, Harosoy 63, Lee, and Ransom as host plants, respectively. With the unimproved Peking cultivar as the host plant, USDA 191 fixed 3.3 times more N2 than did the USDA 110 during the 20-day period. The superior N2 fixation capability of USDA 110 with the four North American cultivars as hosts resulted primarily from higher nitrogenase activity per unit nodule mass (specific acetylene reduction activity) and higher nodule mass per plant. The higher N2-fixation capability of USDA 191 with the Peking cultivar as host resulted primarily from higher nodule mass per plant, which was associated with higher nodule numbers. There was significant variation in the N2-fixation capabilities of the four North American cultivar-USDA 191 symbioses. Pickett 71 and Lee cultivars fixed significantly more N2 in symbiosis with USDA 191 than did the Harosoy 63 and Ransom cultivars. This quantitative variation in N2-fixation capability suggests that the total incompatibility (effectiveness of nodulation and efficiency of N2 fixation) of host soybean plants and R. fredii strains is regulated by more than one host plant gene. These results indicate that it would not be prudent to introduce R. fredii strains into North American agricultural systems until more efficient N2-fixing symbioses between North American cultivars and these fast-growing strains can be developed. When inoculum containing equal numbers of USDA 191 and of strain USDA 110 was applied to the unimproved Peking cultivar in Perlite pot culture, 85% of the 160 nodules tested were occupied by USDA 191. With Lee and Ransom cultivars, 99 and 85% of 140 and 96 nodules tested, respectively, were occupied by USDA 110.  相似文献   

9.
Rhizobium fredii USDA257 forms nitrogen-fixing nodules on soybean cultivar Peking, but not on cultivar McCall. This pattern of nodulation persists when McCall and Peking seedlings are cultivated together in plastic growth pouches. Reciprocal grafting experiments confirm that the root genotype, and not that of the shoot, regulates such cultivar specificity. When Peking roots are grafted onto McCall seedlings, the nodulation responses of roots similarly remain unaffected. Transposon-mutant 257DH4, which is derived from USDA257, can form nitrogen-fixing nodules on McCall. Such nodulation is blocked by the presence of USDA257 in the inoculum. Grafting experiments indicate that blocking is not due to a translocatable inhibitor produced by McCall roots or triggered by their interaction with USDA257. Thus, neither freely diffusible nor graft-transmissible substances are involved in cultivar-specific interactions of soybean with R. fredii and its derivatives.  相似文献   

10.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

11.
Sinorhizobium fredii strain USDA191 forms N-fixing nodules on the soybean (Glycine max L. Merr.) cultivars (cvs) McCall and Peking, but S. fredii strain USDA257 nodulates only cv Peking. We wondered whether specificity in this system is conditioned by the release of unique flavonoid signals from one of the cultivars or by differential perception of signals by the strains. We isolated flavonoids and used nodC and nolX, which are nod-box-dependent and -independent nod genes, respectively, to determine how signals activate genes in the microsymbionts. Seeds of cv McCall and cv Peking contain the isoflavones daidzein, genistein, and glycitein, as well as their glucosyl and malonylglucosyl glycosides. Roots exude picomolar concentrations of daidzein, genistein, glycitein, and coumestrol. Amounts are generally higher in cv Peking than in cv McCall, and the presence of rhizobia markedly influences the level of specific signals. Nanomolar concentrations of daidzein, genistein, and coumestrol induce expression of nodC and nolX in strain USDA257, but the relative nolX-inducing activities of these signals differ in strain USDA191. Glycitein and the conjugates are inactive. Strain USDA257 deglycosylates daidzin and genistin into daidzein and genistein, respectively, thereby converting inactive precursors into active inducers. Although neither soybean cultivar contains unique nod-gene-inducing flavonoids, strain- and cultivar-specific interactions are characterized by distinct patterns of signal release and response.  相似文献   

12.
The displacement of indigenous Bradyrhizobium japonicum in soybean nodules with more effective strains offers the possibility of enhanced N2 fixation in soybean (Glycine max (L.) Merr.). Our objective was to determine whether the wild soybean (G. soja Sieb. & Zucc.) genotype PI 468397 would cause reduced competitiveness of important indigenous B. japonicum strains USDA 31, 76, and 123 and thereby permit nodulation by Rhizobium fredii, the fast-growing microsymbiont of soybean. In an initial experiment, PI 468397 nodulated and fixed moderate amounts of N2 with USDA 31 and 76 but, despite the formation of nodules, fixed essentially no N2 with USDA 123. In contrast, PI 468397 formed a highly effective symbiosis with R. fredii strain USDA 193. In two subsequent experiments, Williams soybean and PI 468397 were grown in a pasteurized soil mixture or in soybean rhizobium-free soil and inoculated with both USDA 123 and USDA 193. In each experiment, more than 90% of the nodules of Williams contained USDA 123, while only a maximum of 2% were occupied with USDA 193. In contrast, in the two experiments, 16 and 11%, respectively, of the nodules produced on PI 468397 were occupied by USDA 123, while in both experiments 87% contained USDA 193. Thus, in relation to the cultivar Williams, which is commonly grown and used as a parent in soybean breeding programs in the United States, PI 468397 substantially reduced the competitive ability of B. japonicum strain USDA 123 in relation to R. fredii strain USDA 193.  相似文献   

13.
Rhizobium fredii strain USDA257 produces nitrogen-fixing nodules on primitive soybean cultivars such as Peking but fails to nodulate agronomically improved cultivars such as McCall. Transposonmutant 257DH4 has two new phenotypes: it nodulates McCall, and its ability to do so is sensitive to the presence of parental strain U5DA257, i.e. it is subject to competitive nodulation blocking. We have isolated a cosmid containing DNA that corresponds to the site of transposon insertion in 257DH4 and have localized Tn5 on an 8.0 kb EcoRI fragment. The 5596 bp DNA sequence that surrounds the insertion site contains seven open reading frames. Five of these, designated nolBTU, ORF4, and nolV, are closely spaced and of the same polarity. nolWand nolX are of the opposite polarity. The initiation codon for nolW lies 155bp upstream from that of nolB, and it is separated from nolXby 281 bp. The predicted NolT and NolW proteins have putative membrane-spanning regions. The N-terminus of the hypothetical NolW protein also has limited homology to NodH of Rhizobium meliloti, but none of the deduced protein sequences has significant homology to known nodulation gene products. Site-directed mutagenesis with mudll1734 confirms that inactivation of nolB, nolT, nolU, nolV, nolW, or nolX extends host range for nodulation to McCall soybean. This phenotype could not be genetically dissected from sensitivity to competitive nodulation blocking. Expression of nolBTU anti nolX is induced as much as 30-fold by flavonoid signal molecules, even though these genes lack nod-box promoters. Histochemical staining of McCall roots inoculated with nolB–, nolU–, or nolXlacZ fusions verifies that these genes are expressed continuously from preinfection to the stage of the functional nodule. Although a nolU–ORF4–nolV clone hybridizes to a single 8.0 kb EcoRI fragment from 10 strains of R. fredii and broad-host-range Rhizobium sp. NGR234, hybridizing sequences are not detectable in other rhizobia.  相似文献   

14.
The tricarboxylic acid (TCA) cycle plays an important role in generating the energy required by bacteroids to fix atmospheric nitrogen. Citrate synthase is the first enzyme that controls the entry of carbon into the TCA cycle. We cloned and determined the nucleotide sequence of the gltA gene that encodes citrate synthase in Sinorhizobium fredii USDA257, a symbiont of soybeans (Glycine max [L.] Merr.) and several other legumes. The deduced citrate synthase protein has a molecular weight of 48,198 and exhibits sequence similarity to citrate synthases from several bacterial species, including Sinorhizobium meliloti and Rhizobium tropici. Southern blot analysis revealed that the fast-growing S. fredii strains and Rhizobium sp. strain NGR234 contained a single copy of the gene located in the bacterial chromosome. S. fredii USDA257 gltA mutant HBK-CS1, which had no detectable citrate synthase activity, had diminished nodulation capacity and produced ineffective nodules on soybean. Light and electron microscopy observations revealed that the nodules initiated by HBK-CS1 contained very few bacteroids. The infected cells contained large vacuoles and prominent starch grains. Within the vacuoles, membrane structures that appeared to be reminiscent of disintegrating bacteroids were detected. The citrate synthase mutant had altered cell surface characteristics and produced three times more exopolysaccarides than the wild type produced. A plasmid carrying the USDA257 gltA gene, when introduced into HBK-CS1, was able to restore all of the defects mentioned above. Our results demonstrate that a functional citrate synthase gene of S. fredii USDA257 is essential for efficient soybean nodulation and nitrogen fixation.  相似文献   

15.
The type III secretion system (TTSS) of plant- and animal-pathogenic bacteria is involved in translocation of virulence factors into the host cell cytosol where they modulate cellular processes. Sinorhizobium fredii USDA257 is a gram-negative soil bacterium that forms nitrogen-fixing nodules on specific soybean cultivars (Glycine max (L.) Merr.). This microsymbiont is known to secrete at least five nodulation outer proteins (Nops) in response to flavonoid induction. Some of these Nops have been shown to be secreted by TTSS in this symbiotic bacterium. We have isolated and purified an 18-kDa extracellular protein from flavonoid-induced cultures of USDA257. The N-terminal amino acid sequence of this purified protein was identical to the published sequence of the soybean cultivar-specificity protein, NopB (formerly NoIB). Inactivation of rhcN, which encodes an ATPase, abolished secretion of NopB. Similarly, a nonpolar nopB deletion mutant was compromised in its ability to secrete several Nops. A construct containing the coding region of nopB under control of a T7 promoter was expressed successfully in Escherichia coli and, subsequently, the recombinant NopB was purified by nickel-affinity column chromatography. Polyclonal antibodies raised against purified recombinant NopB were used in Western blot analysis to demonstrate the association of NopB with pilus-like surface appendages. Deletion analysis indicated that the first 33 N-terminal residues of NopB were necessary and sufficient to mediate the secretion of a green fluorescent protein reporter. Introduction of plasmid-borne extra copies of nopB into USDA257 resulted in lower accumulation of native NopB. We also show that USDA257 and its nonpolar nopB deletion mutant exhibited discernible differences in their ability to nodulate legume hosts.  相似文献   

16.
This is the first report identifying bacteriophages and documenting megaplasmids of Sinorhizobium fredii. Plasmid DNA content and bacteriophage typing of eighteen strains of S. fredii were determined. S. fredii strains fell into ten plasmid profile groups containing 1 to 6 plasmids, some evidently larger than 1000 MDa. Twenty-three S. fredii lytic phages were isolated from soil, and they lysed six different S. fredii strains. The host range and plaque morphology of these phages were studied. Susceptibility to S. fredii phages was examined for S. meliloti; Rhizobium leguminosarum bvs. viceae, trifolii and Phaseoli; R. loti; Bradyrhizobium japonicum; B. elkanii and Bradyrhizobium sp. (Arachis). Several phages that originally lysed S. fredii strain USDA 206 also lysed strains of all three S. fredii serogroups described originally by Sadowsky et al. Phages that infected S. fredii strains USDA 191 and USDA 257 were highly specific and lysed only serogroup 193 strains. S. meliloti strains L5-30 and USDA 1005 were lysed by three of the phages that lysed S. fredii strain USDA 217. No other Rhizobium or Bradyrhizobium strain tested was susceptible to lysis by any of the S. fredii phages. The present investigation indicates that phage susceptibility in conjunction with plasmid profile analysis may provide a rapid method for identification and characterization of strains of S. fredii.  相似文献   

17.
The fast-growing Rhizobium sp. strain NGR234, isolated from Papua New Guinea, and 13 strains of Sinorhizobium fredii, isolated from China and Vietnam, were fingerprinted by means of RAPD, REP, ERIC and ARDRA. ERIC, REP and RAPD markers revealed a considerable genetic diversity among fast-growing rhizobia. Chinese isolates showed higher levels of diversity than those strains isolated from Vietnam. ARDRA analysis revealed three different genotypes among fast-growing rhizobia that nodulate soybean, even though all belonged to a subcluster that included Sinorhizobium saheli and Sinorhizobium meliloti. Among S. fredii rhizobia, two strains, SMH13 and HH303, might be representatives of other species of nitrogen-fixing organisms. Although restriction analysis of the nifDnifK intergenic DNA fragment confirmed the unique nature of Rhizobium sp. strain NGR234, several similarities between Rhizobium sp. strain NGR234 and S. fredii USDA257, the ARDRA analysis and the full sequence of the 16S rDNA confirmed that NGR234 is a S. fredii strain. In addition, ARDRA analysis and the full sequence of the 16S rDNA suggested that two strains of rhizobia might be representatives of other species of rhizobia.  相似文献   

18.
Summary R-prime plasmids were formed between the plasmid of Rhizobium fredii strain USDA191 containing nodulation and nitrogen-fixation genes, pRjaUSDA191c, and pRL180, and RP1 derivative. R. fredii USDA191 contains four HindIII fragments that hybridize with an 8.7 kb EcoRI fragment that contains nodulation genes from R. meliloti. These four fragments are on pRjaUSDA191c and are 15.5 kb, 12.5 kb, 6.8 kb, and 5.2 kb in size. A series of R-primes generated in E. coli of pRjaUSDA191c were transferred into a Nod- Nif- derivative of strain USDA191 to determine which nodulation region is necessary for nodule formation. Transconjugants containing the 12.5 kb and the 6.8 kb HindIII fragments on segments of pRjaUSDA191c produced nodules on soybean plants. However, transconjugants containing the 12.5 kb HindIII fragment alone were unable to form nodules, suggesting that the 6.8 kb HindIII fragment or the 6.8 kb and the 12.5 kb HindIII fragments together were needed for nodule formation. The 6.8 kb HindIII fragment was subcloned into the vector pVK102 and transferred into transconjugants containing no sequences homologous to R. meliloti nodulation DNA or to transconjugants containing only the 12.5 kb HindIII fragment. Nodules were formed on soybeans only when both the 12.5 kb and the 6.8 kb HindIII fragments were present in R. frediistrain USDA191.  相似文献   

19.
Three Glycine genotypes, G. max cv. Williams, G. soja PI 468397, and G. soja PI 342434 in combination with the two rhizobial strains Bradyrhizobium japonicum USDA 123 and Rhizobium fredii USDA 193 were analysed for phytoalexin concentration in the nodules. In the nodules of PI 468397/B. japonicum USDA 123 a very strong glyceollin I accumulation occurred around 30 d.p.i. Ultrastructural analysis of these nodules revealed several symptoms of a severe plant defense response associated with plant cell death (hypersensitive reaction): The cytoplasm of the infected cells was degraded and organelles had vanished. The cell walls of the infected cells showed remarkable thickening. This plant defense response could only be observed in this strain/genotype interaction. The same strain did not elicit a phytoalexin accumulation in the other plant genotypes tested, indicating that this response occurs at the genotype-specific level. This special character of G. soja PI 468397 is heritable as indicated by glyceollin I analysis of the nodules formed by F1 hybrids of PI 468397xWilliams inoculated with B. japonicum USDA 123. The genotype/strain specific occurrence of the hypersensitive response in root nodules resembles the race/cultivar specific incompatibility of several plant-pathogen interactions. This specificity, together with the phenomenon of the HR itself, points out the close physiological relationship between the late stages of the root nodule symbiosis and a plant/pathogen interaction.  相似文献   

20.
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on soybean (Glycine max [L.] Merr.) in a cultivar-specific manner. This strain forms nodules on primitive soybean cultivars but fails to nodulate agronomically improved North American cultivars. Soybean cultivar specificity is regulated by the nolXWBTUV locus, which encodes part of a type III secretion system (TTSS). NolX, a soybean cultivar specificity protein, is secreted by TTSS and shows homology to HrpF of the plant pathogen Xanthomonas campestris pv. vesicatoria. It is not known whether NolX functions at the bacterium-plant interface or acts inside the host cell. Antibodies raised against S. fredii USDA257 NolX were used in immunocytochemical studies to investigate the subcellular localization of this protein. Immunostaining of paraffin-embedded sections of developing soybean and cowpea (Vigna unguiculata [L.] Walp) nodules revealed localization of NolX in the infection threads. Protein A-gold immunocytochemical localization studies utilizing affinity-purified NolX antibodies revealed specific deposition of gold particles in the fibrillar material inside infection threads. Similar immunogold localization studies failed to detect NolX in thin sections of mature soybean and cowpea nodules. The results from this study indicate that NolX is expressed in planta only during the early stages of nodule development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号