首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When buds form in summer or early fall, modified stipules act as bud scales and their adaxial epidermis secretes a resin that fills the bud. This secretory layer collapses in the dormant bud. Immature leaves, stipules, and leaf primordia occupy the center of the bud; all lack functional resin glands. In spring, stipules of emerging leaves develop an adaxial palisadelike secretory epidermis that becomes more ridged longitudinally in successive stipules. Marginal teeth of the first leaves to emerge are covered with trichomes and lack a secretory epidermis. In successive leaves the teeth become glandular and secrete resin as the lamina unrolls. Later in the season, marginal leaf glands account for much of the resin. Unspecialized hydathodes or extrafloral nectaries occur proximal to each glandular tip. Guttation of water or nectar occurs here through stomata located above a vein ending. On the basis of field observations and a laboratory feeding experiment, the resin seems to function mainly as an insect repellent. It may also reduce water loss from young leaves.  相似文献   

2.
The structure of shoots, in particular of winter buds, ofHydrangea macrophylla was examined. The non-flower-bearing shoot is usually composed of a lower and an upper part, between which a boundary is discernible by means of a distinctly short internode. This internode is the lowermost of the upper part, and it is usually shorter than the internodes immediately above and below, although the internodes tend to shorten successively from the proximal to the distal part of the shoot. Variations exist in the following characters among the terminal bud, the axillary bud on the lower part of the shoot and the axillary bud on the upper part: (1) length of bud; (2) character of the outermost pair of leaf primordia; (3) degree of development of secondary buds in the winter bud; and (4) the number of leaf primordia. Usually, the terminal bud contains several pairs of foliage leaf primordia with a primordial inflorescence at the terminal of the bud, but the axiallary bud contains only the primordia of foliage leaves in addition to a pair of bud scales.  相似文献   

3.
Millington , W. F. (Marquette U., Milwaukee, Wis.) Shoot tip abortion in Ulmus americana. Amor. Jour. Bot. 50(4): 371–378. Illus. 1963.—Phenological observations of American elm have shown that the phenomenon of shoot tip abortion in which the distal several plastochrons of each shoot turn yellow and abort, inducing sympodial growth, occurs over a period of several weeks starting at the time fruits are shed from older trees. Time of abortion varies among plants of different age, among individuals of the same age, and among shoots on the same individual. In the latter case, time of abortion is inversely correlated with the vigor of the shoot, the most vigorous shoots on a branch being the last to abort. Abortion is first evident in the yellowing of the entire shoot tip. Cytohistological studies show that necrosis commences at the sixth to eighth node back of the apex, where it is apparent in autolysis of internal cells of the stipules. Necrosis progresses acropetally in the stipules and young leaves and ultimately involves the leaf primordia at the shoot apex. Mitosis ceases in the shoot apex and its meristematic appearance is lost. These changes follow in basipetal sequence in the axillary buds down to the bud below the abscission site. This bud remains active and will resume growth the following season. The abscission site is evident externally as a green-yellow boundary in the basal part of the internode. No protective layer is present at the time of abscission, but it develops after the shoot tip abscises. There is no indication of blocking of vascular tissues before shoot tip abortion and limitation of water supply probably is not a causal factor. Photoperiod studies show that shoot tip abortion is accelerated in short days and delayed but not prevented in long days. Greenhouse experiments show that abortion is delayed also in seedlings, in plants supplied with organic fertilizer, or grown with the roots unconfined. Plants grown in a nutrient solution deficient in nitrogen aborted ahead of controls and plants deficient in calcium. Although shoot tip abortion occurs coincident with fruit drop, there is no indication of a causal relationship. The literature relating to shoot tip abortion is discussed in relation to the above observations.  相似文献   

4.
The growth of the tropical tree Brownea ariza Benth. is modular and conforms to Troll's model. Distinctive anatomical features of its shoot development were investigated. Each module consists of from 6–10 compound leaves and terminates its growth by shoot tip abortion. Sympodial branch systems are formed by renewal growth from the most distal (pseudoterminal) 1–2 buds. New modules are wholly preformed within large (15–28 cm) buds. The flush occurs without a resting period and full shoot expansion is completed within one day. A distinct abscission zone develops in the stem just distal to the node of the last expanded leaf. Abortion of the shoot apex and 5–6 embryonic leaves occurs 2–3 days after the flush begins. This tissue vacuolates and begins to become necrotic prior to actual abscission. New flushes are pendent but are reoriented to a plagiotropic or upright position to create an arborescent form. Reorientation begins quickly (10° within 2 days) due to maturation of primary and secondary tissues and continues throughout the life of the branch by means of reaction wood formation on the upper surface.  相似文献   

5.
Rhodoleia has long been believed to be the only member of theHamamelidales lacking stipules, and its systematic position has been doubtful. The present investigation shows, in contrast, thatRhodoleia championi Hook. f. produces conspicuous stipules which are, however, restricted to a few leaves of the transition region between bud scales and foliage leaves. In the foliage leaves stipules are apparently reduced, except sometimes in the outermost leaf. The presence of stipules and other correspondences clearly shows thatRhodoleia belongs to theHamamelidaceae.  相似文献   

6.
The evolutionary trend and its ecological implications in sympodial and monopodial branching patterns has been investigated in 20 JapaneseAcer spp. through comparison of shoot tip abortion and terminal bud formation. The genus is divided into two species groups according to its branching pattern, one (6 species) predominantly exhibiting sympodial branching with frequent monopodial branching in short shoots (sympodial species), and the other (14 species) exhibiting only monopodial branching (monopodial species). The early ontogeny of leaf and bud scales is described. Despite the difference in branching patterns, the bud scales of terminal buds are essentially the same in having a leaf base developed to function as a protecting organ. In all the sympodial species, during the abortion of a sympodium shoot tip, one or two pairs of primordia were found to occur on the apex, and later wither. These primordia resemble bud scales of terminal buds in their ontogeny and morphology, and appear to be rudimentary. It is suggested that a rudimentary terminal bud develops together with the establishment of sympodial branching, and that sympodial branching has originated from monopodial branching. Based on this proposed evolutionary trend, it is suggested thatAcer has moved from less shady habitats into shady habitats with monopodial branching (advantageous for vertical growth) changing into sympodial branching (advantageous for lateral spread).  相似文献   

7.
The development of stipules especially their spatial and temporal pattern of initiation in relation to the leaf was investigated in Vitis riparia Michx., cv. Concord, Parthenocissus tricuspidata (Sieb. & Zucc.) Planch., Cissus oblonga (Benth.) Planch., Cissus hypoglauca (F.v.M.) A. Gray, and Cissus rhombifolia Vahl. Early initiation is characterized by the occurrence of a single primordium with a wide insertion on the flank of the shoot apex. Distinguishing between stipule primordia and the leaf primordium is impossible at this early stage. Distinct primordia can only be seen in later stages of development. At maturity, the stipules occupy free lateral positions. Developmental processes such as timing of initiation and zonal growth seem to play an important role in early development. In five of the six taxa examined in this study, the early initiation of stipules, their close association with the leaf and also their faster relative rate of growth during early development appear to give them a characteristic protective function. In contrast, C. rhombifolia stipules are initiated later than the leaf and seem to develop at a slower rate than the leaf proper. Consequently, they never enclose their associated leaf but instead cover the next youngest leaf. Many different criteria are used to distinguish the broad category of stipules, and therefore many interpretations have been made depending on the type of approach that is used. This study attempts to look at stipules in terms of developmental processes and demonstrates a more accommodating leaf/stipule concept which provides a clearer comprehension of the nature of the stipule.  相似文献   

8.
Morphological and anatomical changes in shoots of vigorously growing cottonwood plants (Populus deltoides Bartr.) were studied during dormancy induction in 8-hr short days (SD) and in control plants grown in 18-hr long days (LD). Pronounced structural changes occurred in terminal buds after 4 wk and full dormancy was achieved in 7 wk of SD. Leaf expansion ceased after 5 wk of SD as foliage leaves matured to the terminal bud base at leaf plastochron index 0 (LPI 0). Within the bud, total leaf length (lamina + petiole) decreased and stipule length increased progressively each week; thus, the ratio total leaf length/stipule length decreased rapidly, especially at the position of incipient bud-scale leaves LPI - 1 and LPI - 2. These bud-scale leaves were fully developed by wk 6 and were derived from enlarged stipules and aborted laminae. The full complement of primordia within the bud at the start of SD eventually matured as foliage leaves and the first bud-scale leaf (LPI - 1) was initiated immediately following transfer to SD. Acropetal advance of the primary-secondary vascular transition zone (TZ) was associated with leaf maturation. However, it did not advance throughout the entire vascular cylinder as in LD, but only in those leaf traces serving mature leaves beneath the terminal bud. In both LD and SD treatments the same linear relationship was maintained between LPI of the TZ and LPI of the most recently matured leaf; both parameters simultaneously increased in LD and decreased in SD. Thus, the relationship between leaf maturation and advance of the TZ was maintained irrespective of environment.  相似文献   

9.
Developmental preformation can constrain growth responses of shoots to current conditions, but there is potential for flexibility in development preceding formation of the preformed organs. Mayapple (Podophyllum peltatum) is strongly heteroblastic, producing rhizome scales, bud scales, and either a single vegetative foliage leaf or two foliage leaves on a sexual shoot. To understand how and when preformation constrains growth responses, we compare (1) how leaf homologs of the renewal shoot differ in development, (2) whether there are differences in shoot development that occur in advance of morphological determination of shoot type, and (3) whether there are points of developmental flexibility in renewal shoot growth prior to preformation of the foliage and floral organs. We use scanning electron microscopy and histology to show that the three vegetative leaves (both types of scale leaves and the vegetative foliage leaf) are similar in the initial establishment of an encircling and overarching leaf base. Differences among them are found in the timing of differentiation of the leaf base and in the relative timing and degree of growth of the lamina and petiole. In contrast, foliage leaves on sexual shoots show less expression of the leaf base and precocious growth of the lamina and petiole. Prior to shoot type determination, there are no morphological differences in the sequence or position of leaf homologs that predict final shoot type. In this colony, leaves at positions 12 and 13, on average, appear to be identical in development until they are between 700 and 800 μm in length, when it becomes possible to distinguish leaves that will become vegetative foliage leaves from additional bud scale leaves on vegetative or sexual shoots. We suggest that late developmental determination of leaves at positions 12 and 13 reflects ontogenetic sensitivity to a transition to flowering. Thus, in mayapple, heteroblasty appears to facilitate developmental flexibility prior to the point where shoot growth becomes constrained by preformation of determined aerial structures.  相似文献   

10.
Leaves of seed plants are generally characterized as organs of determinate growth. In this regard, Guarea and related genera seem unusual in that the pinnately compound leaves of these plants contain a bud at their tip from which new pinnae expand from time to time. Previous studies (based upon superficial examinations of leaf-tip buds) have produced contradictory conclusions regarding how long the leaf apex remains meristematic and produces new pinna primordia. In order to determine whether leaf development in Guarea is truly indeterminate, we microscopically examined leaf-tip buds of G. guidonia and G. glabra. In both species, the leaf apex remains meristematic and continues to produce new pinna primordia as the leaf ages. Unexpanded leaves of G. guidonia contained an average of 23 pinna primordia, while the oldest leaves we examined had initiated an average of 44 total pinnae. In G. glabra, unexpanded leaves contained 8 pinnae, whereas an average of 28 pinnae had been initiated on the oldest leaves. These results indicate that leaf development in Guarea is truly indeterminate. Periodic examination of individual intact leaves indicated that the leaves commonly continue their growth for 2 or more years (observed maximum = 51 months). As new leaflets are initiated at the shoot apex (and subsequently expand in rhythmic flushes), older (basal) leaflets may abscise. In addition, the petiole and rachis of the leaf thicken and become woody as a result of the activity of a vascular cambium. Guarea leaves therefore seem to function as the analogue of a typical twig (stem) in general habit as well as in their indeterminate apical growth and secondary thickening.  相似文献   

11.
Shoot tips of Colophospermum mopane (Kirk ex Benth.) Kirk ex Léonard produce leaves which at maturity are bifoliate and devoid of stipules. Investigation of their early ontogeny, however, shows that these leaves begin as trifoliate structures partially enclosed by their stipules. The latter are fused along their mid regions, forming a tongue-like “connector.” The lower chamber of this stipule pair harbors the apical meristem while the upper compartment enfolds the two lateral leaflets. The terminal leaflet, histologically resembling the stipules, also fulfills a similar function by covering the top portion of its sister leaflets. Anatomically, the shoot apex displays a pendulum symmetry, with rather steep elevation of that internode portion which subtends the newly formed primordium. Some comparisons with the shoot apex of Hymenaea are drawn.  相似文献   

12.
Critchfield , William B. (Pacific SW Forest & Range Expt. Sta., Berkeley, Calif.) Leaf dimorphism in Populus trichocarpa. Amer. Jour. Bot. 47 (8) : 699–711. Illus. 1960.—In Populus trichocarpa and other species of Populus, each tree bears 2 kinds of leaves, referred to here as “early” and “late” leaves. Both leaf types are present on all long shoots. They differ in many features of external morphology, including petiole length, size and occurrence of marginal glands, venation, and stomatal distribution. This type of foliar dimorphism has its origins in a pronounced difference in leaf ontogeny. The early leaves originate in the developing bud and overwinter as embryonic leaves. The first late leaves are also present in the winter bud, but as arrested primordia, and succeeding late leaves are initiated at the tip of the growing shoot and develop uninterruptedly to maturity during the growing season. A similar correlation between leaf form and the circumstances of leaf ontogeny appears to be a common feature of many other instances of heterophylly. The expansion of the pre-formed early leaves is almost completed by late spring, when the first late leaves begin to grow rapidly. The formation of late leaves may then continue until late in the season. The rapid elongation of the stem does not begin until the first late leaves expand. Elongation is restricted to shoots producing late leaves. Consequently, the early leaves are confined to short shoots and the base of long shoots; adventitious shoots and the upper part of long shoots bear only late leaves. Certain other woody plants with long and short shoots also exhibit a restriction of elongation to those shoots on which a second set of leaves is produced.  相似文献   

13.
The presence of a shoot apex and shoot apical meristem (SAM), said to be absent in subfamily Podostemoideae (Podostemaceae), is confirmed for Marathrum utile and M. foeniculaceum. The vegetative shoot axis is terminated by a small group of meristematic cells which are surrounded by the tissue of the adnate bases of foliage leaves. The slightly bulged tip of the shoot apex is embraced by the youngest leaf, facing the apex with its adaxial side. The study also refers to the spathella, a cup-shaped structure covering obligatorily the young flower bud in Podostemoideae. The occurrence of two separate peaks in the young spathella of M. foeniculaceum supports the view that the spathella is formed by two fused bracts (hypsophylls). The two bracts are perpendicular to the distichous foliage leaves below the spathella. The scaly leaflet on the spathella of A. latifolia apparently does not represent a rudimentary blade of the spathella, but is interpreted as a separate bract. The occasional occurrence of scales below or above the spathella points to a reduction of bracts that were originally present in greater number on the pedicels.  相似文献   

14.
The interaction of environmental and genetic variation in hazelnut (Corylus avellana) shoot development and the behaviour, survival, and colonisation of eriophyid bud mites (Phytoptus avellanae and Cecidophyopsis vermiformis) were studied. The distribution of galled buds on shoots indicated that mites colonised only those buds formed during the mite migration period. The point of entry is probably the growing shoot tip. Once within this structure, as the shoot develops the mites have access to a succession of newly-formed, bud primordia that are unprotected by bud scales. The relative accessibility of the apical meristem and bud primordia may affect host susceptibility.  相似文献   

15.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

16.
Shoot development of temperate and tropical members of Berberis s. l. was examined in order to assess: (1) the homology of the spines along the long shoots and the foliage leaves that form on the short shoots; (2) the occurrence of heterophylly and/or heteroblasty in the genus; and (3) the structural correspondence between cataphylls, spines, and foliage leaves. The 1-5-armed spines have been interpreted as modified compound leaves lacking stipules, as a modified lamina (central spine) with stipules (lateral spines), or less often, as transformed branches, or as epidermal outgrowths. On the other hand, the foliage leaves of the short shoots have been interpreted as leaflets of palmately compound leaves. Our results indicate that there are three distinct leaf types per node: (1) Leaves modified in spines spirally arranged in long shoots; (2) foliage, expanded leaves densely arranged in short shoots; and (3) cataphylls protecting axillary buds. The spines are leaf homologs with a clear distinction between the leaf base with stipules, and a laminar portion modified into the 1-5-armed spine; the lateral spines are not stipules as they arise from the marginal meristem of the laminar portion, and not from the leaf base. The foliage leaves also have stipules flanking the leaf base. Both spiny leaves and foliage leaves develop an articulation between the base and the laminar portion. Cataphylls of the short shoots of Berberis s. str. and those of the reproductive short shoots of Mahonia correspond to the entire leaf base, but those of the renewal (vegetative) shoots of Mahonia are spiny and have an odd vestigial pinnately compound lamina. Heterochrony due to ontogenetic truncation caused by the formation of the terminal inflorescence at the apex of the short shoots could be responsible for the lack of petiole/lamina differentiation in the foliage leaves. The spiny long-shoot/foliose short-shoot system of branching in Berberis s. str. appears to be genetically and phylogenetically fixed and not environment-dependent. This represents a clear example of metamorphic heteroblasty sensu Zotz et al. (Botanical Review 77:109–151, 2011) with further occurrence of heterophylly along the short shoots.  相似文献   

17.
The size (length and diameter) and number of leaf primordia of winter buds of Nothofagus antarctica (G. Forster) Oerst. shrubs were compared with the size and number of leaves of shoots derived from buds in equivalent positions. Buds developed in two successive years were compared in terms of size and number of leaf primordia. Bud size and the number of leaf primordia per bud were greater for distal than for proximally positioned buds. Shoots that developed in the five positions closest to the distal end of their parent shoots had significantly more leaves than more proximally positioned shoots of the same parent shoots. The positive relationship between the size of a shoot and that of its parent shoot was stronger for proximal than for distal positions on the parent shoots. For each bud position on the parent shoots there were differences in the number of leaf primordia per bud between consecutive years. The correlations between the number of leaf primordia per bud and bud size, bud position and parent shoot size varied between years. Only shoots produced close to the distal end of a parent shoot developed neoformed leaves; more proximal sibling shoots consisted entirely of preformed leaves. Leaf neoformation, a process usually linked with high shoot vigour in woody plants, seems to be widespread among the relatively small shoots developed in N. antarctica shrubs, which may relate to the species' opportunistic response to disturbance.  相似文献   

18.
Buds axillary to foliage leaves of water hyacinth can elongate either as vegetative stolons or as renewal shoots produced in association with the terminal inflorescence. Stolons differ from renewal shoots in position within the shoot system, morphology, and function. Renewal shoot buds always expand, whereas stolon buds may or may not. A stolon bud develops in conjunction with the subtending leaf; as that leaf matures, the stolon bud reaches a critical period in development. At this point, the bud either continues to expand, producing a stolon, or it stops growth and matures. Maturation is not irreversible, but the probability of a bud expanding decreases as bud age increases. In the field, buds on plants at the water hyacinth mat edge frequently produce stolons, whereas buds on plants inside the mat rarely do so. Leaf morphology also varies between plants in these two regions of the mat. The particular association of leaf and branch type found in the field, however, can be reversed experimentally, indicating that although leaf and bud development are coordinated, the particular course of each is independent.  相似文献   

19.
Nephrolepis exaltata cv. Bostoniensis, the Boston fern, exhibits extreme stem dimorphism. The plant has orthotropic, dictyostelic shoots which bear pinnatifid leaves and plagiotropic, protostelic stolons which are aphyllous. Vegetative reproduction occurs by budding from primary and secondary stolons. Secondary stolons arise exogenously from derivatives of the apical cell of the primary stolon, whereas root primordia develop endogenously. Shoots develop in vivo when a creeping stolon makes contact with the substrate via extensive root proliferation. When stolon segments are excised and grown in vitro, secondary stolon primordia expand and initiate leaf primordia, forming new leafy shoots. In Platycerium bifurcatum, the staghorn fern, asexual propagation occurs on ageotropic roots ramifying among the basal nest fronds. Root bud initiation is marked by root tip hypertrophy following cortical parenchyma expansion. Root apical cell derivatives produce the bud apex; the root apical cell remains separate from the developing root bud. Superficially, vegetative reproduction in Nephrolepis and Platycerium appears to involve unusual organs. However, both ferns exhibit leafy bud development from distinct sites of origin, not from undetermined primordia or from direct transformation of root to shoot. Thus, distinctness of organ types is maintained in these two ferns and no evidence for interconvertibility of organ types has been found.  相似文献   

20.
The prostrate rhizome of Butomus umbellatus produces branch primordia of two sorts, inflorescence primordia and nonprecocious vegetative lateral buds. The inflorescence primordia form precociously by the bifurcation of the apical meristem of the rhizome, whereas the non-precocious vegetative buds are formed away from the apical meristem. The rhizome normally produces a branch in the axial of each foliage leaf. However, it is unclear whether the rhizome is a monopodial or a sympodial structure. Lateral buds are produced on the inflorescence of B. umbellatus either by the bifurcation or trifurcation of apical meristems. The inflorescence consists of monochasial units as well as units of greater complexity, and certain of the flower buds lack subtending bracts. The upright vegetative axis of Limnocharis flava has sympodial growth and produces evicted branch primordia solely by meristematic bifurcation. Only certain leaves of the axis are associated with evicted branch primordia and each such primordium gives rise to an inflorescence. The flowers of L. flava are borne in a cincinnus and, although the inflorescence is simpler than that of Butomus umbellatus, the two inflorescences appear to conform to a fundamental body plan. The ultimate bud on the inflorescence of Limnocharis flava always forms a vegetative shoot, and the inflorescence may also produce supernumerary vegetative buds. Butomus umbellatus and Limnocharis flava exhibit a high degree of mirror image symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号