首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
The estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda, Brachyura) inhabits salt marshes along the South Atlantic coast from Rio de Janeiro (Brazil) to Patagonia (Argentina). In the present study, salinity tolerance (0-45‰; 16-1325 mOsm/kg H2O) and hemolymph osmotic and ionic (Na+, Cl, and K+) regulation in both female and male C. granulatus were analyzed in summer and winter. Results showed that both female and male C. granulatus are euryhaline. Mortality was only observed in extremely low salinity (0‰; 16 mOsm/kg H2O) for both sexes. For females, the LT50 at 0‰ salinity was similar in summer (20.1 h) and winter (17.4 h). Males were more tolerant to salinity than females in both seasons, and mortality was observed only in summer (LT50 = 50.9 h). Results from freshly collected crabs or long-term (16-day) osmotic and ionic regulation experiments in the laboratory showed that male C. granulatus is a better hyper-osmoregulator than female in summer and winter. However, a hypo-osmoregulatory ability was only observed in females experimentally subjected to salinity 40‰ (1176 ± 11 mOsm/kg H2O) in both seasons. In both sexes, hyper-osmotic regulation was achieved by hyper-regulating hemolymph Na+, Cl, and K+ concentration. In females, hypo-osmotic regulation was achieved by hypo-regulating hemolymph Na+ and Cl concentration. Long-term (16-day) osmotic and ionic regulations in different salinities were similar in males or females collected and tested in summer and winter. Despite this lack of a seasonal effect on hemolymph osmoregulatory and ionoregulatory patterns in males or females, a marked seasonal difference in the dynamics of these processes was observed for both sexes. In the first 2 days after hypo-osmotic shock (20‰→5‰; 636→185 mOsm/kg H2O), variations in female osmolality and ion (Na+ and Cl) concentration were larger and faster in winter than in summer, while in males the opposite was observed. Furthermore, a seasonal effect on the crab response to hyper-osmotic shock (20‰→40‰; 636→1176 mOsm/kg H2O) was only observed in males. A new osmolality and ion (Na+ and Cl) concentration steady state was faster achieved in winter than in summer. Regarding sexual differences, females showed a better capacity to hypo-regulate the hemolymph osmolality and Na+ concentration than males, even after a sudden increase in salinity (hyper-osmotic shock) in both seasons. On the other hand, males showed a better capacity to hyper-regulate the hemolymph osmolality and Na+ concentration than females, even after a sudden decrease in salinity (hypo-osmotic shock), especially in winter. Taken together, results reported in the present study suggest the need to consider both sex and collection season as important factors in future osmotic and ionic regulation studies in estuarine crabs.  相似文献   

2.
  • Accumulation of NaCl in soil causes osmotic stress in plants, and sodium (Na+) and chloride (Cl?) cause ion toxicity, but also reduce the potassium (K+) uptake by plant roots and stimulate the K+ efflux through the cell membrane. Thus, decreased K+/Na+ ratio in plant tissue lead us to hypothesise that elevated levels of K+ in nutrient medium enhance this ratio in plant tissue and cytosol to improve enzyme activation, osmoregulation and charge balance.
  • In this study, wheat was cultivated at different concentrations of K+ (2.2, 4.4 or 8.8 mm ) with or without salinity (1, 60 or 120 mm NaCl) and the effects on growth, root and shoot Na+ and K+ distribution and grain yield were determined. Also, the cytosolic Na+ concentration was investigated, as well as photosynthesis rate and water potential.
  • Salinity reduced fresh weight of both shoots and roots and dry weight of roots. The grain yield was significantly reduced under Na+ stress and improved with elevated K+ fertilisation. Elevated K+ level during cultivation prevented the accumulation of Na+ into the cytosol of both shoot and root protoplasts. Wheat growth at vegetative stage was transiently reduced at the highest K+ concentration, perhaps due to plants' efforts to overcome a high solute concentration in the plant tissue, nevertheless grain yield was increased at both K+ levels.
  • In conclusion, a moderately elevated K+ application to wheat seedlings reduces tissue as well as cytosolic Na+ concentration and enhances wheat growth and grain yield by mitigating the deleterious effects of Na+ toxicity.
  相似文献   

3.
Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60‐h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth.  相似文献   

4.
Effects of salinity (0, 50, 100 and 250 mM NaCl) on growth, root:shoot dry mass ratio, osmotic potential (ψx), electrolyte leakage and contents of Na+ and K+, polyamines and abscisic acid (ABA) were studied in the grape rootstocks Dogridge, 1613, St. George and Salt Creek. In control rootstocks, the root length was highest in Dogridge and contents of K+ and ABA in Salt Creek. Salinity treatments increased root Na+ and decreased K+ content and St. George exhibited highest Na+ content and Na+:K+ ratio. The root:shoot dry mass ratio in all rootstocks increased upto 100 mM NaCl. With increasing NaCl concentration, putrescine, spermine and spermidine contents showed consistent increase and putrescine increase was highest in St. George and spermidine and spermine in the Dogridge and Salt Creek. Under salinity, the ABA content increased in all the rootstocks but more in Salt Creek and Dogridge than in St. George.  相似文献   

5.
This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm ) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na+ transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl? transport rate increased with 75 and 100 mm NaCl, while K+ transport rate fell from 50 mm to 100 mm NaCl. In roots, Na+ and Cl? transport rates fell slightly only in 50 mm (to Na+) and 50 and 100 mm (to Cl?) NaCl, while K+ transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na+ and Cl? in leaves and roots, K+/Na+ homeostasis, transport of K+ and selectivity (K–Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species.  相似文献   

6.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

7.
To elucidate the osmotic adjustment characteristics of mangrove plants, inorganic ion and organic solute contents of intermediate leaves were investigated in 3-month-old Kandelia candel (L.) Druce seedlings during 45 days of NaCl treatments (0, 200, and 500 mM NaCl). The contents of Na+, Cl, total free amino acids, proline, total soluble sugars, pinitol and mannitol increased to different degree by salinity, whereas, K+ content decreased by salinity compared with control. NaCl treatment induced an increase of inorganic ion contribution while a decrease of organic solute contribution. It was concluded that accumulating a large amount of inorganic ions was used as the main osmotic adjustment mechanism under salinity treatment. However, accumulation of organic osmolytes might be considered to play much more important role in osmoregulation under severe salinity (500 mM NaCl) than under moderate salinity (200 mM NaCl), thus the damage caused by high toxic ions (Na+ and Cl) concentration in K. candel leaves could be avoided.  相似文献   

8.
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt‐exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non‐toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.  相似文献   

9.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

10.
Identification of the primary response to salinity is of great importance in order to develop salt tolerant species. In this work the effect of a NaCl osmotic shock on leaf elongation of Phaseolus vulgaris L. cv. Contender has been studied. After establishing an osmotic shock by adding NaCl to the root medium, three consecutive events could be distinguished. First, there was a sudden interruption of leaf growth, followed by a period of retardation of growth, and then by a restoration of growth to reach the steady-state growth rate. High calcium (5 mM) in the growth medium diminished the initial loss of water in the roots and kept the water content higher upon restoration of leaf growth, as compared to low calcium levels (0.5 mM). During the low calcium treatment, leaf malate started to increase already 3 h after the start of the osmotic treatment, showing a maximum concentration at around 9 h, then decreasing and approaching the value of control plants. At high calcium, malate concentration remained unchanged with time. Plants grown in the presence of low calcium showed an increase in the concentration of total amino acids upon NaCl shock. It is estimated that organic metabolites, if confined to the cell cytoplasm, contribute significantly to the osmotic adjustment, together with inorganic ions. Our results support the hypothesis that water shortage in the roots is responsible for the initial inhibition of leaf elongation. The beneficial effect of calcium on restoration of growth after the NaCl shock is a consequence of short-term, energetically expensive osmotic adjustment, in which mainly organic metabolites are involved. Under steady state conditions, high calcium treatment results in a faster growth rate than low calcium. In a process of osmotic adjustment, in which inorganic ions are principally involved, this is the result of a decrease in leaf Na+ concentration in expanding leaves, together with an increase in K+ and Ca2+.  相似文献   

11.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

12.
植物染料在工业化应用过程中存在着资源限制,目标色相不丰富、色牢度不理想、植物染料本身的鉴别和成品的鉴别等问题。为了丰富染料植物资源的来源和提高染料植物资源的利用效率,该研究对西双版纳傣族利用的染料植物及其染色工艺涉及的相关植物进行了系统调查。2014年10月到2016年1月,采用半结构式访谈法对西双版纳14个村寨的56个关键信息人进行访谈,收集信息包括使用着色植物、媒染植物和助染植物的种类、傣名、利用部位和资源来历,以及预处理和染色过程工艺条件与技术步骤;采用参与式观察法对4种色相的10个染色工艺过程进行了记录,采集了凭证标本和图像资料;对调查信息进行了整理编目。结果表明:西双版纳地区的傣族使用11种着色植物和17种助染植物;目标色相有红、黄、蓝和绿。分析了傣族染料植物资源的发掘潜力、傣族利用植物染色对于染料植物利用的应用启发。该研究详细深入地记录了西双版纳傣族使用的染料植物的种类及其相关的组合和染色的过程。该研究结果对民族民间染料植物与染色工艺的产业化应用具有重要借鉴意义,为染料植物资源筛选及其染色工艺条件优化提供了参考。  相似文献   

13.
Debaryomyces nepalensis NCYC 3413, a food spoiling yeast isolated from rotten apple, has been previously demonstrated as halotolerant yeast. In the present study, we assessed its growth, change in cell size, and measured the intracellular polyol and cations (Na+ or K+) accumulated during growth in the absence and presence of different concentrations of salts (NaCl and KCl). Cells could tolerate 2 M NaCl and KCl in defined medium. Scanning electron microscopic results showed linear decrease in mean cell diameter with increase in medium salinity. Cells accumulated high amounts of K+ during growth at high concentrations of KCl. However, it accumulated low amounts of Na+ and high amounts of K+ when grown in the presence of NaCl. Cells grown in the absence of salt showed rapid influx of Na+/K+ on incubation with high salt. On incubation with 2 M KCl, cells grown at 2 M NaCl showed an immediate efflux of Na+ and rapid uptake of K+ and vice versa. To withstand the salt stress, osmotic adjustment of intracellular cation was accompanied by intracellular accumulation of polyol (glycerol, arabitol, and sorbitol). Based on our result, we hypothesize that there exists a balanced efflux and synthesis of osmolytes when D. nepalensis was exposed to hypoosmotic and hyperosmotic stress conditions, respectively. Our findings suggest that D. nepalensis is an Na+ excluder yeast and it has an efficient transport system for sodium extrusion.  相似文献   

14.

Main conclusion

Salt sensitivity in chickpea is determined by Na+ toxicity, whereas relatively high leaf tissue concentrations of Cl? were tolerated, and the osmotic component of 60-mM NaCl was not detrimental.Chickpea (Cicer arietinum L.) is sensitive to salinity. This study dissected the responses of chickpea to osmotic and ionic components (Na+ and/or Cl?) of salt stress. Two genotypes with contrasting salt tolerances were exposed to osmotic treatments (?0.16 and ?0.29 MPa), Na+-salts, Cl?-salts, or NaCl at 0, 30, or 60 mM for 42 days and growth, tissue ion concentrations and leaf gas-exchange were assessed. The osmotic treatments and Cl?-salts did not affect growth, whereas Na+-salts and NaCl treatments equally impaired growth in either genotype. Shoot Na+ and Cl? concentrations had markedly increased, whereas shoot K+ had declined in the NaCl treatments, but both genotypes had similar shoot concentrations of each of these individual ions after 14 and 28 days of treatments. Genesis836 achieved higher net photosynthetic rate (64–84 % of control) compared with Rupali (35–56 % of control) at equivalent leaf Na+ concentrations. We conclude that (1) salt sensitivity in chickpea is determined by Na+ toxicity, and (2) the two contrasting genotypes appear to differ in ‘tissue tolerance’ of high Na+. This study provides a basis for focus on Na+ tolerance traits for future varietal improvement programs for salinity tolerance in chickpea.
  相似文献   

15.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

16.
Ramos  José  López  María Jesús  Benlloch  Manuel 《Plant and Soil》2004,259(1-2):163-168
Atriplex nummularia plants are able to grow well in the absence of significant amounts of Na+. Medium levels of salinity (100 mM NaCl or KCl) did not cause substantial inhibition of growth but increasing concentrations of salt induced a progressive decline in length and weight of the plants. This inhibition was significantly higher in KCl grown plants than in NaCl grown plants. In addition, although it has been proposed that both K+ and Na+ are involved in the osmotic adjustment of plants in response to high soil salinity, we show that Na+ ions contribute more efficiently than K+ ions to perform this function. Our results also indicate that most of the osmotic adjustment of the plant was due to the accumulation of inorganic ions. The strong inhibition of Rb+ transport caused by internal sodium suggests that this cation could be efficiently used by the plant and, as a consequence, the transport of other monovalent cations is down-regulated.  相似文献   

17.
A crucial prerequisite for plant growth and survival under high salinity is maintenance of Na+ and K+ balance. Accumulation of Na+ and K+ in high concentration in the cytosol reduces crop yield. To cope with such imbalance ionic conditions, plants use a number of transporters to maintain Na+ and K+ homoeostasis inside the cell and regulate plant growth and development. This cation and pH homoeostasis is regulated by monovalent cation/proton antiporters (CPA) that fall in two categories, the CPA1 family that includes Na+/H+ NHX antiporters, and the CPA2 family that includes Cation/H+ (CHX) and K+ efflux antiporters (KEA). In this review we highlighted the role of NHX-antiporters in regulation of Na+ and K+ balance. NHX proteins are required for accurate K+ compartmentation. They mediate K+ specific vacuolar sequestration, pH adjustment, turgor and osmotic regulation, and play a unique role in stomatal movement and cell expansion.  相似文献   

18.
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.  相似文献   

19.
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K+) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world’s most important and salt-sensitive crop species. Using efflux analysis with 42K, coupled with growth and tissue K+ analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K+ set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K+ release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K+ status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na+ accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K+ efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K+ status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na+ accumulation is the key factor in performance decline on NaCl stress.  相似文献   

20.
Callus and suspension cultures adapted to various concentrations of NaCl or mannitol were developed from the cultivated potato Solanum tuberosum cv. Desire. Growth of the calli was less inhibited by mannitol than by iso-osmotic concentrations of NaCl. Reduction of growth by both NaCl and mannitol was considerably lower in osmotically adapted calli than in non-adapted ones. Salt-adapted suspension cultures that grew in the medium to which they had been originally adapted had a shorter lag in growth as well as a shorter time required to achieve the maximum growth, as compared with non-adapted cells. Suspension cultures adapted to NaCl concentrations higher than 150 mM were obtained only after preadaptation to osmotic stress. Adaptation of these cells was found to be stable. Accumulation of Na+ was lower and level of K+ was more stable in osmotically adapted than in non-adapted calli, when both were exposed to salt. Potassium level in NaCl-adapted calli exposed to saline medium was lower than that in non-adapted calli in standard medium. The maximum of Cl and Na+ accumulation was reached at higher external salt concentration in salt-adapted than in non-adapted suspension cultures. In both callus and suspension cultures, Cl accumulated more than Na+. Potassium level decreased more in non-adapted than in NaCl-adapted suspension cultures. The decrease of osmotic potential in osmotically adapted calli exposed to mannitol and in salt-adapted calli and suspension cultures exposed to salt was correlated to the increase of the external concentration. Such a correlation was not found in osmotically adapted calli exposed to salt. Non-electrolytes were found to be the main contributors to the decrease is osmotic potential in both callus and suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号