首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Companion cell-specific inhibition of the potato sucrose transporter SUT1   总被引:26,自引:3,他引:23  
In many plants, translocation of sucrose from mesnsophyll to phloem for long-distance transport is carrier-mediated. The sucrose H+-symporter gene SUT1 from potato is expressed at high levels in the phloem of mature, exporting leaves and at lower levels in other organs. Inhibition of SUT1 by expression of an antisense gene in companion cells under control of the rolC promoter leads to accumulation of high amounts of soluble and insoluble carbohydrates in leaves and inhibition of photosynthesis. The distribution of in situ localized starch does not correspond with areas of reduced photosynthesis as shown by fluorescence imaging. Dissection of antisense effects on sink and source organs by reciprocal grafts shows that inhibition of transporter gene expression in leaves is sufficient to produce chlorosis in leaves and reduced tuber yield. In contrast to the arrest of plasmodesmal development found in plants that express yeast invertase in the apoplast, in mature leaves of sucrose transporter antisense plants plasmodesmata are branched and have median cavities. These data strongly support an apoplastic mode of phloem loading in potato, in which the sucrose transporter located at the plasma membrane of the sieve element/companion cell complex represents the primary route for sugar uptake into the long-distance translocation pathway.  相似文献   

2.
Amino acid transport via phloem is one of the major source‐to‐sink nitrogen translocation pathways in most plant species. Amino acid permeases (AAPs) play essential roles in amino acid transport between plant cells and subsequent phloem or seed loading. In this study, a soybean AAP gene, annotated as GmAAP6a, was cloned and demonstrated to be significantly induced by nitrogen starvation. Histochemical staining of GmAAP6a:GmAAP6a‐GUS transgenic soybean revealed that GmAAP6a is predominantly expressed in phloem and xylem parenchyma cells. Growth and transport studies using toxic amino acid analogs or single amino acids as a sole nitrogen source suggest that GmAAP6a can selectively absorb and transport neutral and acidic amino acids. Overexpression of GmAAP6a in Arabidopsis and soybean resulted in elevated tolerance to nitrogen limitation. Furthermore, the source‐to‐sink transfer of amino acids in the transgenic soybean was markedly improved under low nitrogen conditions. At the vegetative stage, GmAAP6a‐overexpressing soybean showed significantly increased nitrogen export from source cotyledons and simultaneously enhanced nitrogen import into sink primary leaves. At the reproductive stage, nitrogen import into seeds was greatly enhanced under both sufficient and limited nitrogen conditions. Collectively, our results imply that overexpression of GmAAP6a enhances nitrogen stress tolerance and source‐to‐sink transport and improves seed quality in soybean. Co‐expression of GmAAP6a with genes specialized in source nitrogen recycling and seed loading may represent an interesting application potential in breeding.  相似文献   

3.
Zuther E  Kwart M  Willmitzer L  Heyer AG 《Planta》2004,218(5):759-766
Companion cell-specific expression of a cytosolic invertase from yeast (Saccharomyces cerevisiae) was used as a tool to synthesise oligosaccharides in the sieve element/companion cell complex and study whether oligosaccharides could be transported in the phloem of an apoplastically loading species. Potato (Solanum tuberosum L.) plants expressing the invertase under the control of the Agrobacterium tumefaciens rolC promoter produced the trisaccharide 6-kestose in leaves, which was transported via the phloem and accumulated in tubers of transgenic plants. In graft experiments with rolC invertase plants as scion and wild-type rootstocks, 6-kestose accumulated in tubers to levels comparable to sucrose. This shows that long-distance transport of oligosaccharides is possible in apoplastically loading plants, which normally transport only sucrose. The additional transport route for assimilates neither led to elevated photosynthetic activity nor to increased tuber yield. Enhanced sucrose turnover in companion cells caused large amounts of glucose and fructose to be exuded from leaf petioles, and elevated levels of sucrose were detected in phloem exudates. While the latter indicates a higher capacity for sucrose loading into the phloem due to increased metabolic activity of companion cells, the massive release of hexoses catalysed by the invertase seemed to interfere with assimilate delivery to sink organs.Abbreviations HPAEC High-performance liquid anion-exchange chromatography - SE–CCC Sieve element/companion cell complex - WT Wild type  相似文献   

4.
Roles of organic acids and nitrate in the long-distance transport of cobalt (Co) in xylem saps of hyperaccumulator Alyssum murale and non-hyperaccumulator Trifolium subterraneum were studied under hydroponic conditions. Organic acids (oxalic, malic, malonic, citric, and fumaric) and nitrate in xylem sap samples were separated and determined simultaneously by reversed-phase high performance liquid chromatography after solid-phase extraction with nanosized hydroxyapatite. Results indicated that Co treatment significantly increased the concentrations of xylem oxalic and malic acids for the hyperaccumulator A. murale compared to the control but significantly decreased the concentrations of xylem nitrate and malonic acid; concentrations of citric acid in xylem sap samples did not show significant difference between the control and Co treatments. By analyzing the relationship between the concentrations of organic acids, nitrate, and concentrations of Co in xylem saps, it could be concluded that oxalic and malic acids in xylem saps seemed to participate in the long-distance Co translocation process, and citric acid did not relate to the xylem Co transport of A. murale and T. subterraneum. Our work might be very useful for understanding the mechanism of long-distance transport of heavy metals in hyperaccumulator.  相似文献   

5.
none 《Journal of bryology》2013,35(1):145-147
Abstract

Regeneration from detached leaves at 20°C in 12 h days was studied in six species. Of the four species of Polytrichum and two of Pogonatum studied, only Pogonatum aloides did not regenerate from leaves. This result could be related to the fact that in nature only this species possesses persistent primary protonemata. Polytrichum commune, P. formosum and P. juniperinum developed long, muchbranched secondary protonemata which produced buds at intervals. Pogonatum urnigerum developed buds without an initial protonema, and Polytrichum piliferum short, unbranched protonemal threads, each bearing a single terminal bud. In all cases regenerants arose from either the large cells at the bases of lamellae, or less often, basal cells of the lamellae themselves. In Pogonatum urnigerum the amount of regeneration tended to decrease from apex to base of leaf, while in the Polytrichum species the reverse occurred. No definite conclusions could be drawn with regard to the effect, if any, of leaf age on regeneration. Possibly the temperature experienced beforehand or some other seasonal factor, affects regeneration, but the question needs further investigation.  相似文献   

6.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

7.
Two critical innovations had a profound influence upon the evolutionary history of plants: the nutritionally dependent embryo and apoplastic phloem loading processes. Both depend upon the ability of the plant cell membrane to transport sugars. The evolutionary origin of sugar transport by plants is, therefore, of special phylogenetic importance. Recent evidence suggests that hexoses such as glucose are the main form of sugar transported apoplastically across the placental junction between gametophyte and sporophyte of the moss Polytrichum (Renault et al., 1992, Plant Physiology 100: 1815–1822). There is also considerable evidence that hexose transport may be involved in apoplastic phloem loading in Arabidopsis and other flowering plants. Results of numerous molecular, biochemical, immunofluorescence, and ultrastructural studies indicate that bryophytes and charophycean algae are related to the ancestors of vascular plants. This report demonstrates that the charophyte Coleochaete orbicularis exhibits enhanced growth in the presence of glucose under conditions in which inorganic carbon sources are limiting. Computer image analysis was used to demonstrate that nonaerated cultures of C. orbicularis grown for 7 weeks in an inorganic medium supplemented with 1% glucose produce as much as 13.6 times the biomass of clonal cultures grown for the same length of time in the same medium without glucose. Furthermore, addition of 1% glucose to nonaerated cultures yielded chlorophyll a concentration 20 times higher after 4 weeks growth than cultures grown under the same conditions without added glucose. This and other evidence derived from comparative growth measurements strongly suggest that Coleochaete takes up (or loads) glucose. Experimental results also suggest that hexose uptake by charophytes (such as Coleochaete) that typically grow in low alkalinity waters might provide a supplementary source of organic carbon when dissolved carbon dioxide levels are low. This capability could have served as an evolutionary precursor to hexose import by plant embryos, as well as leptom and phloem loading in bryophytes and vascular plants.  相似文献   

8.
Cardiac glycoside transport was investigated on the organ and whole plant level. Uptake experiments were carried out with shoot and root cultures of Digitalis lanata. In both systems primary cardenolides, i.e., those with a terminal glucose in their oligosaccharide side chain, were taken up against their concentration gradient, whereas the glucose-free secondary cardenolides were not. Active uptake of primary cardenolides was further evidenced by KCN inhibition of uptake. Using plantlets grown in vitro the long-distance transport of primary cardenolides from the leaves to the roots was demonstrated. Cardenolides were also detected in etiolated leaves, induced on plants with green leaves, which are supposed to be unable to synthezise cardenolides de novo, providing further evidence for long-distance transport. Several primary cardenolides were detected in the honeydew excreted by aphids fed on Digitalis lanata leaves, indicating that the phloem is a transporting tissue for cardenolides. On the other hand, the xylem sap obtained by applying the pressure-chamber technique was cardenolide-free. It was concluded that in Digitalis primary cardenolides serve as both the transport and the storage form of cardenolides. After their synthesis they are either stored in the vacuoles of the source tissue or loaded into the sieve tubes, from which they are unloaded at other sites where they are trapped in the vacuoles of the respective sink tissue.  相似文献   

9.
Plantlets of Solanum tuberosum L. cv. Sirtema were used to studythe regulation of the long-distance transport of potassium.The effects of polyamines and two plant hormones, abscisic acid(ABA) and benzyladenine (BA), on this process were investigated.Foliar sprays of putrescine or BA increased the transport of(K) 86Rb to the upper part of the plant. In contrast, spermidinetreatment enhanced the translocation into the growing tuber,as did ABA. These specific effects were partially correlatedto the distribution of endogenous polyamines within the plant.Spermidine was the predominant polyamine in the tuber whileputrescine was as abundant as spermidine in the leaves. Thetotal amount of putrescine, spermidine and spermine decreasedwith the physiological age of the leaves and tubers. Moreover,from heat-girdling experiments, it was shown that the polyamine,14C-putrescine, supplied to a leaf, was transported via thephloem. It is suggested that polyamines like phytohormones havea regulatory role in long-distance transport. Key words: Hormone-directed-transport, K, phloem, polyamines, potato, 14C-putrescine transport  相似文献   

10.
As reported in a previous paper [Lerchl et al. (1995) Plant Cell, 7, 259–270], expression of Escherichia coli inorganic pyrophosphatase in the cytosol under the control of the phloem-specific rolC promoter from, Agobacterium rhizogenes results in decreased growth of transgenic tobacco plants. In this paper we investigate the effect of the phloem-specific expression of pyrophosphatase on phloem metabolism, and on plant growth and allocation. A small decrease in the hexose phosphate/UDP-glucose ratio, the ATP/ADP ratio and the respiration rate in the midribs of the transformants provides evidence Hint mobilization of sucrose via pyrophosphate-dependent reactions is necessary for phloem energy metabolism. The source leaves of the transformants had higher levels of carbohydrates and amino acids and a much higher glutamine/glutamate ratio than the wild type, showing that export was inhibited and that the growth inhibition was not due to a lack of photoas-similates or organic nitrogen in the leaves. The accumulation of photoassimilates was paralleled by a decrease in photosynthesis, chlorophyll content and ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity, a small increase in hexose phosphates and triose phosphates and a decrease in glycerate 3-phosphate in the source leaves. There was a decrease of soluble sugars and amino acids in sink leaves of the transformants. In sink leaves amino acids decreased more than carbohydrates and a decrease in the glutamine/ glutamate ratio was observed. This was accompanied by a large decrease of nitrate. Sugars and amino acids were also reduced in the root tips of the transformants. The carbohydrate /amino acid ratio decreased 5-fold in the root tips, indicating a particularly smile shortage of carbohydrates. Relatively high levels of sugars and amino acids in the basal regions of the root and the increase in sugars in the midrib indicate that there is also increased leakage of assimilates out of the phloem during long-distance transport. Metabolism is required to maintain phloem function along the transport route, as well as for the initial step of loading. The transformants showed decreased stem and root growth. The growth inhibition was largest in conditions allowing rapid growth of the wild type (high light and nitrogen supply).  相似文献   

11.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

12.
Thorpe MR  Ferrieri AP  Herth MM  Ferrieri RA 《Planta》2007,226(2):541-551
The long-distance transport and actions of the phytohormone methyl jasmonate (MeJA) were investigated by using the short-lived positron-emitting isotope 11C to label both MeJA and photoassimilate, and compare their transport properties in the same tobacco plants (Nicotiana tabacum L.). There was strong evidence that MeJA moves in both phloem and xylem pathways, because MeJA was exported from the labeled region of a mature leaf in the direction of phloem flow, but it also moved into other parts of the same leaf and other mature leaves against the direction of phloem flow. This suggests that MeJA enters the phloem and moves in sieve tube sap along with photoassimilate, but that vigorous exchange between phloem and xylem allows movement in xylem to regions which are sources of photoassimilate. This exchange may be enhanced by the volatility of MeJA, which moved readily between non-orthostichous vascular pathways, unlike reports for jasmonic acid (which is not volatile). The phloem loading of MeJA was found to be inhibited by parachloromercuribenzenesulfonic acid (PCMBS) (a thiol reagent known to inhibit membrane transporters), and by protonophores carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) suggesting proton co-transport. MeJA was found to promote both its own transport and that of recent photoassimilate within 60 min. Furthermore, we found that MeJA can counter the inhibitory effect of the uncoupling agent, CCCP, on sugar transport, suggesting that MeJA affects the plasma membrane proton gradient. We also found that MeJA’s action may extend to the sucrose transporter, since MeJA countered the inhibitory effects of the sulfhydryl reagent, PCMBS, on the transport of photoassimilate.  相似文献   

13.
This report investigates the physiological basis for the production of dimorphic leaves on the aquatic angiosperm Callitriche heterophylla. In nature, the leaf morphology of this plant depends on whether the shoot apex is submerged in or emergent from water. The water-form leaves that develop on submerged apices assume a long, linear shape in contrast to the short, obovate appearance of land forms on emergent apices. The parameters of length/width ratio and stomatal density were used as developmental indices to characterize how natural conditions, fluctuating water levels and other experimental treatments affect leaf shape. Transferring submerged and emergent shoots to the alternative culture conditions caused immature leaves to assume the characteristics appropriate to their new environment. Moreover, the treatments of 0.24 mol mannitol, high temperature (30 C) and 10−-5 m abscisic acid induced submerged shoots to produce land-form leaves whereas 10−-5 m gibberellic acid mediated the development of water-form leaves on emergent shoots. Water, osmotic and pressure potentials of immature leaves in the control and experimental treatments were determined by thermocouple psychrometry. Under natural conditions, growing water forms exhibited high turgors (3–5 bars) while developing land forms showed much lower turgors (0–1 bar). Similar correlations between turgor pressure and leaf morphology were observed in the case of the gibberellic acid and mannitol treatments. However, abscisic acid and high temperature caused the developing land-form leaves to exhibit high turgors without a concomitant change to the water-form morphology. Microscopic measurements of epidermal cells established that irrespective of the experimental conditions, water-form leaves had longer and narrower epidermal cells with less convoluted anticlinal walls than land forms. Cell counts indicated that the numbers of epidermal cells did not account for the observed differences in leaf morphology. The results are interpreted in terms of how cell expansion might regulate leaf morphology in aquatic angiosperms.  相似文献   

14.
The relationships among inorganic carbon transport, bicarbonate availability, intracellular pH, and culture age were investigated in high-calcifying cultures of Emiliania huxleyi (Lohmann) Hay & Mohler. Measurement of inorganic carbon transport by the silicone-oil centrifugation technique demonstrated that gadolinium, a potential Ca2+ channel inhibitor, blocked intracellular inorganic carbon uptake and photosynthetic 14CO2+ fixation in exponential-phase cells. In stationary-phase cells, the intracellular inorganic carbon concentration was unaffected by gadolinium. Gadolinium was also used to investigate the link between bicarbonate and Ca2+ transport in high-calcifying cells of E. huxleyi. Bicarbonate availability had significant and rapid effects on pHi in exponential- but not in stationary-phase cells. 4′, 4′-Diisothiocyanostilbene-2,2′-disulfonic acid did not block bicarbonate uptake from the external medium by exponential-phase cells. Inorganic carbon utilization by exponential- and stationary-phase cells of Emiliania huxleyi was investigated using a pH drift technique in a closed system. Light-dependent alkalization of the medium by stationary-phase cells resulted in a final pH of 10.1 and was inhibited by dextran-bound sulphonamide, an inhibitor of external carbonic anhydrase. Exponential-phase cells did not generate a pH drift. Overall, the results suggest that for high-calcifying cultures of E. huxleyi the predominant pathway of inorganic carbon utilization differs in exponential and stationary phase cells of the same culture.  相似文献   

15.
Turgeon R  Medville R 《Protoplasma》2011,248(1):173-180
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with 14CO2 translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.  相似文献   

16.
The system consisting of a few proportional detectors with appropriate electronic components was earlier developed for in vivo studies of long distance transport in whole maize seedlings. 14CO2 assimilation rate (Pa), time of radioactivity appearing in the loading region (AT), transport speed in the leaf (TSl), transport speed between the leaf and the roots (TSr), the maximum radioactivity values detected in the leaf below the feeding area (Rl) and in the mesocotyl (Rr) from leaves to roots in maize seedlings were calculated from the obtained temporal profiles of radioactivity. The study was undertaken to follow the changes in separate steps of long distance transport in maize seedlings as affected by two light irradiances and application of p-chloromercuribenzenesulphonic acid and fusicoccin, with the aim to investigate different steps of long distance transport, particularly phloem loading. The method used allows to study in vivo the different aspects of long distance transport in maize seedlings, both qualitatively and quantitatively. It was shown that the characteristics obtained from the radioactivity profiles corresponded to different steps of long distance transport, as assimilate synthesis, phloem loading, and phloem translocation. It was also demonstrated that although active phloem loading participate in assimilate export from the leaves, assimilate transport along the maize seedling might undergo accordingly to assimilate gradient, particularly under light irradiance higher than during the growth.  相似文献   

17.
Plant species which translocate distinct combinations of carbohydrates in the phloem were investigated to assess whether differences in minor-vein anatomy were associated with differences in carbohydrate composition of the phloem sap. In Vicia faba L., a species in which the minor-vein companion cells are modified into transfer cells, sucrose alone was found to be the translocated form of carbohydrate. In Vicia, phloem transport of sucrose was inhibited by pretreatment of leaves with p-chloromercuribenzenesulfonic acid (PCMBS), a known inhibitor of the sucrose carrier. In contrast, in Ocimum basilicum L., a species in which the minor-vein companion cells are of the symplasmically linked intermediary cell type, both sucrose- and raffinose-family oligosaccharides were exported in the phloem. In this species, no PCMBS sensitivity was observed for phloem transport of either sucrose- or raffinose-family oligosaccharides, although a PCMBS-sensitive sucrose carrier was detected in leaf tissues. This carrier did not appear to be involved in phloem loading, rather, it appeared that phloem loading occurred via the symplasm in this species. In the polyoltranslocating species Petroselinum crispum L., the same insensitivity to PCMBS was seen, suggesting that symplasmic phloem loading also occurred. The companion cells were symplasmically connected to the surrounding bundle-sheath cells by numerous H-shaped plasmodesmata but were not intermediary cells, and no raffinose oligosaccharides were exported by Petroselinum. Taken together, the data indicate that apoplasmic transport may be responsible for phloem loading in species in which sucrose alone is exported. However, in those plant species in which a combination of sucrose and any other carbohydrate, including the polyols, is translocated, symplasmic phloem loading may predominate.Abbreviation PCMBS p-chloromercuribenzenesulfonic acid This work was supported by National Science Foundation Grant DCB 8901785 to M.A.M. and by a National Science Foundation Graduate Minority Fellowship to L.L.F. The authors gratefully acknowledge the help of Dr. William W. Thomson in preparing the micrograph.  相似文献   

18.
We tested the possible cytokinin effect on the functioning of the active transport system involved in the assimilate loading into the phloem as a cause for the cytokinin sink and retention effect. This effect is manifested in the deceleration of substance export from and the stimulation of substance import to the sites of local phytohormone application to the mature detached leaf from untreated leaf areas. To affect the membrane mechanisms of the substance transport, we used leaf treatment with the phytotoxin fusicoccin, an enhancer of plasmalemmal H+-ATPase and a potential stimulator of assimilates export, and with the phytohormone ABA affecting transport, metabolism, and plant growth. However, fusicoccin did not enhance 14C-sucrose export from the leaf blade and did not interfere with the cytokinin-induced export deceleration. ABA reduced substantially 14C export from the leaf but eliminated the cytokinin effect on this process. Similar results were obtained for broad bean (Vicia faba L.) leaves with apoplastic phloem loading, involving H+-ATPase activity, and pumpkin (Cucurbita pepo L.) leaves with symplastic phloem loading, that is, occurring without sucrose transmembrane translocation and without H+-ATPase involvement. The conclusion is that the cytokinin-induced development of sink zones in source leaves is not related to the membrane mechanisms of the substance transport in the mesophyll–phloem system. The data obtained support the idea that the cause for the cytokinin sink and retention effect is the enhancement of elongation growth and total activation of metabolism in the mesophyll cells of the detached leaf.  相似文献   

19.
The aim of this study was to determine the range of NaCl concentrations in the nutrient solution that allow Suaeda altissima (L.) Pall., a salt-accumulating halophyte, to maintain the upward gradient of water potential in the “medium-root-leaf” system. We evaluated the contribution of Na+ ions in the formation of water potential gradient and demonstrated that Na+ loading into the xylem is involved in this process. Plants were grown in water culture at NaCl concentrations ranging from zero to 1 M. The water potential of leaf and root cells was measured with the method of isopiestic thermocouple psychrometry. When NaCl concentration in the growth medium was raised in the range of 0–500 mM (the medium water potential was lowered accordingly), the root and leaf cells of S. altissima decreased their water potential, thus promoting the maintenance of the upward water potential gradient in the medium-root-leaf system. Growing S. altissima at NaCl concentrations f 750 mM and 1 M disordered water homeostasis and abolished the upward gradient of water potential between roots and leaves. At NaCl concentrations of 0–250 mM, the detached roots of S. altissima were capable of producing the xylem exudate. The concentration of Na+ in the exudate was 1.3 to 1.6 times higher than in the nutrient medium; the exudate pH was acidic and was lowered from 5.5 to 4.5 with the rise in the salt concentration. The results indicate that the long-distance Na+ transport and, especially, the mechanism of Na+ loading into the xylem play a substantial role in the formation of water potential gradient in S. altissima. The accumulation of Na+ in the xylem and acidic pH values of the xylem sap suggest that Na+ loading into the xylem is carried out by the Na+/H+ antiporter of the plasma membrane in parenchymal cells of the root stele.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 549–557.Original Russian Text Copyright © 2005 by Balnokin, Kotov, Myasoedov, Khailova, Kurkova, Lun’kov, Kotova.  相似文献   

20.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号