首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flowering shoots of Muehlenbeckia platyclados Meisn. bear only reduced scale leaves which resemble the membranous sheath portion (ochrea) of leaves of other members of the Polygonaceae. Shoots propagated from cuttings bear enlarged foliage leaves with distinct lamina, petiole, and ochrea zones. The developmental basis for this heterophylly is explored in order to determine whether scale leaves resemble foliage leaves in their pattern of ontogeny or are developmentally unique. SEM and histological analyses have shown that scale leaves and foliage leaves are distinctive from inception. The scale leaf arises as a collarlike growth and extends over the shoot apex as a hooded sheath without evidence of blade initiation. By contrast, the first stage of foliage-leaf ontogeny is the differentiation of the distal lamina from the future leaf base. As the foliage-leaf ochrea encircles the stem axis, the lamina grows erect and projects from the abaxial surface of the sheath. Lamina reduction coupled with ochrea elaboration in intermediate leaf types indicate a homology between the entire scale leaf and foliage-leaf ochrea. Despite this homology, the production of the bladeless scale leaf does not involve a mere suppression of the foliage-leaf lamina. Erect growth of the saccate ochrea of the foliage leaf contrasts with the hooded expansion of the scale. Early histological differences, including contrasting rates of cell differentiation, also distinguish the two organs. This disparity in modes of growth and differentiation from inception results from separate, predetermined courses of ontogeny. Unlike other plants studied, leaf size and degree of leaf elaboration decrease with shoot meristem enlargement in Muehlenbeckia. Leaf packing does increase with shoot development and may contribute to variations in leaf morphology. It is concluded that the peculiarities of the heterophyllic leaf sequence in Muehlenbeckia are a property of the shoot system as a whole.  相似文献   

2.
The development of the vegetative lateral branches in Alstonia scholaris (L.) R. Br. was examined. The overall architecture conforms to Prévost's model and the branches are sympodial complexes of plagiotropic modules. Each module consists of two whorls of 6–11 foliage leaves and a whorl of four scale leaves. The apex is parenchymatized just distal to the scale leaves. Renewal branches grow from buds in the axils of the scale leaves. These large buds are initiated simultaneously with the scale leaves and “use up” a large portion of the original apex. Parenchymatization of the central region of the apex occurs after a period of lateral growth and development that separates and vascularizes the renewal branches. Branch extension occurs sympodially by substitution. More typical buds develop in the axils of the foliage leaves but grow out only in response to injury or pruning. They are smaller than the renewal buds and, unlike them, are delimited by a shell zone during early development.  相似文献   

3.
The shoot development ofAucuba japonica was studied morphologically. The shoot shows dichasial branching in connection with the formation of a terminal inflorescence and shows a decussate phyllotaxis even in the reproductive phase. The sequence of initiation of successive foliar appendages is very precise, hence the foliage leaf, scale leaf and bract can be compared with each other even at their stages of initiation. In the stage of proximal foliage leaf formation the shoot apex is flat, while in the stage of formation of distal foliage leaves, bud scales and proximal bracts, it becomes concave. In the stage of formation of distal bracts the apex becomes domed. Plastochron durations are relatively long in the vegetative phase in comparison with other plants, and the duration from initiation of the first pair of appendages to that of the second is about one and a half months. Both male and female inflorescences exhibit basically a thyrsoid type of monotelic synflorescence.  相似文献   

4.
胡杨(Populus euphratica Oliv.)是荒漠河岸林防风固沙和水土保持的雌雄异株树种。该研究以不同径阶(8、12、16、20 cm)的胡杨雌雄株为研究对象,通过当年生茎、叶化学计量元素(C、N、P、K)含量及生长关系分析,探讨不同器官化学计量随发育阶段的变化及异速生长关系的性别差异。结果表明:(1)胡杨雌雄株叶片C含量表现为大径阶(20 cm)显著高于小径阶(8 cm),而其叶片N含量随着径阶的增加显著增加;雌雄株茎、叶化学计量随着径阶的增加总体上呈增加趋势,且C、N含量均与径阶呈显著正相关关系;随着径阶的增加,雌株叶片P含量呈下降趋势,与径阶呈显著负相关关系,而雌雄株茎的P、K含量呈上升趋势,且与径阶呈显著正相关关系。(2)雌株各径阶叶片的N含量及8、12、20 cm径阶的叶片P含量均显著大于相应雄株,8、16、20 cm径阶当年生茎C含量以及20 cm径阶茎N、P含量均显著高于相应雄株。(3)雌株叶片C与N在20 cm径阶的斜率指数最大,而雄株在12 cm径阶斜率指数最大,雌雄株在各发育阶段N与P的变化较稳定;在相同C含量时,雄株茎能获得更多的N含量,雌株茎在相同N的情况下能获得更多P元素。研究发现,胡杨雌雄株间茎、叶化学计量元素含量和异速生长关系特征在不同发育阶段存在着明显性别差异,成熟雌株叶片需要更多的化学计量特征含量来满足生殖需求,总体反映了自身生长及环境适应的养分分配策略。  相似文献   

5.
Silicified leaves, dwarf shoots, pollen cones, and seed cones of Pinus from a Late Miocene chert bed within the Yakima Basalt Formation near Yakima, Washington are interpreted as coming from a single new species, P. foisyi. The needles and dwarf shoots are those of a three-needle pine. The needles contain two to four medial resin canals, a biform hypodermis, and endodermal cells with uniformly thickened walls. The pollen cones are ellipsoidal and about 1 cm long, and many contain bisaccate pollen grains. The seed cones are at least 6 cm long and are slightly asymmetrical. The cone axis has a broad sclerotic outer cortex, and the seed wing extends from a thick parenchymatous base. The scale apex bears a conspicuously swollen projection. The foliage and seed cones are identifiable with the Subgenus Pinus, Section Pinus, Subsection Oocarpae independently of one another, and together indicate a fossil species related to the modem Californian closed cone pines. Pinus foisyi represents one of the earliest occurrences of cone asymmetry associated with this group. However, cone serotiny characteristic of the modem species appears to have evolved after the Late Miocene.  相似文献   

6.
Brownea ariza Benth. (Leguminosae: Caesalpinioideae) shows early shoot tip abortion and subsequent renewal growth from the pseudoterminal bud. This species is unusual in that the entire shoot system is formed before flushing from the bud occurs, shoot tip abortion occurs during flushing, and the aborting portion contains three to six leaves as well as primordial structures varying from hood to peg shape. This study focused on the morphological changes from initiation of scale and foliage leaf primordia in the “resting” renewal bud through bud elongation to flushing and bud abortion. Scanning electron microscopy revealed that embryonic scale leaves are hood-shaped while foliage leaf primordia show early segmentation into leaflets and stipules. No transitional stages were observed. Bud scales and foliage leaves show opposite developmental trends. In bud scales, length at maturity increases from first to last formed, while length decreases in sequentially formed foliage leaves. Early in leaf development the stipules keep pace with the elongation of the rachis. When the bud reaches about one half of its final length the leaf rachis begins to exceed the lengths of its stipules. This young rachis terminates in a distinct mucro that persists until maturity at which time it abscises. Growth patterns indicate that mucro and rachis are a single developmental unit. The early abortion of a shoot tip containing several leaves cannot be easily rationalized. Previous suggestions have involved maintenance of form and ecological adaptation. We add the possibility of elimination of cell progeny encumbered by mutations. From this and other studies of this group, it is clear that at maturity leaves of different species may look alike, e.g., Hymenaea and Colophospermum are bifoliolate; Brownea, Saraca, and others are multifoliolate. However, early stages of leaf ontogeny are quite diverse and may be of systematic value, since these early differences are lost or masked by later development.  相似文献   

7.
Comparisons are presented between the three-dimensional airflow patterns created around and by a scale model of a conifer ovulate cone and the trajectories of windborne pollen grains around Picea, Larix, and Pinus ovulate cones. Three general components of the airflow pattern around an ovulate cone model are 1) doldrum-like eddies, rotating over the adaxial surfaces of cone scales and directed toward attached ovules, 2) airflow spiralling around the cone axis along cone scale orthostichies and parastichies, and 3) a complex pattern of vortices (“umbilicus”) directed toward the leeward surface of the ovulate cone. The observed trajectories of pollen grains around cones of Picea, Larix, and Pinus conform to two of these three airflow components: 1) pollen grains are seen to roll along cone scales toward the distal scale margin and to become reentrained in airflow directed backward toward attached ovules, and 2) pollen grains passing around the cone are deflected into the “umbilicus” airflow pattern, where they either settle on or impact with cone scales (approach trajectories), or where they approach the leeward cone surface but are deflected away by airflow passing under the cone (Z-shaped trajectories). Vectoral analyses of pollen grain motion reveal a complex pattern of trajectories influenced by boundary layer conditions defined by ovulate cone geometry and ambient airflow speed. Wind tunnel studies of ovulate cones subtended by leaves and stem indicate that leaves circumscribing the cone act as a snowfence, deflecting windborne pollen toward the cone. Vectoral analyses of airflow patterns and pollen grain trajectories close to ovulate cones indicate that wind pollination in conifers is a non-stochastic aerodynamic process influenced by cone-leaf morphology and the behavior of pollen grains as windborne particles.  相似文献   

8.
Compressions and impressions of leafy twigs, pollen cones, and seed cones of Athrotaxites berryi are abundant in certain layers of the Kootenai Formation (Aptian) in Montana and the Lower Blairmore Formation in adjacent Alberta. The twigs are densely covered by helically arranged leaves that are about 2 mm long and wide. Pollen cones are borne laterally on ultimate branch segments. Some are sessile, while others terminate a minute lateral branch. The cones are 3–4 mm in diam and about 10 mm long. Each sporophyll has a stalk that is about 0.7 mm long and an upturned laminar tip that is 1–1.5 mm long by 1 mm wide. At least two pollen sacs are attached to the abaxial side of each sporophyll. Seed cones are borne terminally on lateral branches that are often curved. These cones are about 10 mm at their widest diameter and about 15 mm long. Each bract and associated ovuliferous scale are fused to form a wedge-shaped complex that is 4–5 mm long. The complex is 0.7 mm wide at its base and expands to about 2.5 mm wide and thick near its apex. The tip of the complex narrows abruptly to a point and terminates in a spine that is about 0.5 mm long. At least one seed occurs on the adaxial side of each complex. Athrotaxites berryi belongs to the Taxodiaceae. It resembles modern Athrotaxis cupressoides but differs from it in too many aspects to be included in the modern genus.  相似文献   

9.
Anisophyllea disticha is characterized by strong shoot dimorphism. Orthotropic shoots with helically arranged scale leaves produce tiers of plagiotropic shoots, while plagiotropic shoots are anisophyllous and bear dorsal scale and ventral foliage leaves arranged in a unique tetrastichous system. In this study we compare the patterns of leaf development and primary vascular organization in the two types of shoots. Orthotropic shoots have an open vascular system with five sympodia. Expansion of orthotropic shoot scale leaves occurs from P1 to P10–12, and leaf tissues mature precociously. Plagiotropic shoots have a closed vascular system with six sympodia. Leaves in ventral and dorsal orthostichies do not differ significantly in size until ca. P15, but ventral leaves are distinct histologically from the second node in an orthostichy, P4–6. Ventral foliage leaves have a diffuse plate meristem, and leaf expansion continues until ca. P30. Differentiation of ventral and dorsal leaf trace procambium parallels the divergent patterns of leaf expansion. These observations demonstrate the strong correlation among shoot symmetry, leaf development, and vascular differentiation within dimorphic shoots of one species.  相似文献   

10.
Summary Thirten sample trees of various sizes in a 29-year-old hinoki [Chamaecyparis obtusa (Sieb, et Zucc.) Endl.] plantation were felled and subjected to the stratified clip technique. Crown profile of foliage area fitted well with the Weibull distribution. The crown profile tended to be more skewed toward the top of crowns in smaller trees than in larger trees. This tendency was reflected in the value of the shape parameter of the Weibull distribution. The shape parameter ranged from 1.73 to 3.23 and gradually increased up to an asymptotic value with an increase of stem diameter at breast height. The scale parameter of the distribution ranged from 1.0 to 4.2 and tended to increase in proportion to stem diameter at breast height. Foliage area of a tree correlated well with stem diameter at breast height through an ordinary allometric equation. Tree height could be approximated fairly well by a generalized allometric equation as a function of stem diameter at breast height. On the basis of the census of stem diameter at breast height, canopy profile could be constructed synthesizing crown profiles of foliage area for individual trees in the stand. Leaf area index was estimated to be 6.6 ha ha–1.  相似文献   

11.
The initiation of secondary xylem in elongating axillary branchesof Populus deltoides Bartr. ex Marsh. is independent of thatin the main stem. Although secondary xylem differentiates acropetallyin the main stem, it does not differentiate from the stem intothe axillary branch. Secondary xylem is usually initiated ininternode 4 (occasionally 3) of the axillary branch, and fromthis site it develops both acropetally in the elongating branchand basipetally toward the main stem. Secondary vessel differentiationalways precedes fibre differentiation. Although secondary xylemdifferentiates in internodes that have ceased elongation, itdifferentiates first in traces of the vascular cylinder servingrapidly expanding and maturing foliage leaves. As younger leaveson the branch expand and mature, secondary xylem differentiatesin their traces eventually producing a complete secondary vascularcylinder. Scale leaves do not initiate secondary xylem independentlyin their traces; they are activated by adjacent traces in thevascular cylinder serving foliage leaves. Once established,the primary-secondary vascular transition zone advances acropetallyin a branch just as it does in the main stem. Populus deltoides Bartr. ex Marsh., cottonwood, axillary branches, secondary xylem, plastochron index, post-dormancy development, xylem.  相似文献   

12.
Tsukaya H  Shoda K  Kim GT  Uchimiya H 《Planta》2000,210(4):536-542
 Heteroblasty in Arabidopsis thaliana was analyzed in a variety of plants with mutations in leaf morphology using a tissue-specific β-glucuronidase gene marker. Some mutants exhibited their mutant phenotypes specifically in foliage leaves. The phenotypes associated with the foliage-leaf-specific mutations were also found to be induced ectopically in cotyledons in the presence of the lec1 mutation. Moreover, the features of an emf1lec1 double mutant showed that cotyledons can be partially converted into carpelloids. When heteroblastic traits were examined in foliage leaves in the presence of certain mutations or natural deviations by histochemical analysis of the expression of the tissue-specific marker gene, it was found that ectopic expression of the developmental program for the first foliage leaves in lec1 cotyledons seemed to affect the heteroblastic features of the first set of foliage leaves, while foliage leaves beyond the third position appeared normal. Similarly, in wild-type plants, discrepancies in heteroblastic features, relative to standard features, of foliage leaves at early positions seemed to be eliminated in foliage leaves at later positions. These results suggest that heteroblasty in foliage leaves might be affected in part by the heteroblastic stage of the preceding foliage leaves but is finally controlled autonomously at each leaf position. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

13.
Photosynthetic gas exchange and the stable isotopic composition of foliage water were measured for a xylem tapping mistletoe, Phoradendron juniperinum, and its host tree, Juniperus osteosperma, growing in southern Utah. The observed isotopic composition of water extracted from foliage was compared to predictions of the Craig-Gordon model of isotopic enrichment at evaporative sites within leaves. Assimilation rates of juniper were higher and stomatal conductance was lower than the values observed for the mistletoe. This resulted in lower intercellular/ ambient CO2 values in the juniper tree relative to its mistletoe parasite. For mistletoe, the observed foliage water hydrogen and oxygen isotopic enrichment was less than that predicted by the model. In juniper, foliage water hydrogen isotopic enrichment was also lower than that predicted by the evaporative enrichment model. In contrast, the oxygen isotopic enrichment in juniper foliage water was slightly greater than that predicted for the evaporative sites within leaves. Hydrogen isotopic enrichment in mistletoe foliage shows systematic variation with stem segment, being highest near the tips of the youngest stems and decreasing toward the base of the mistletoe, where isotopic composition is close to that of stem water in the host tree. In a correlated pattern, mid-day stomatal conductance declined abruptly in mistletoe foliage of increasing age.  相似文献   

14.
Several silicified ovulate cones from the late middle Miocene (Barstovian) represent a new species, Picea wolfei Crabtree. This is the second species of Picea for which structurally preserved seed cones are known to be reported from the Tertiary. The cones are 5.0–8.0 cm long and 1.5–2.0 cm at their greatest diameter. Ovuliferous scales are inserted helically around the cone axis and are recurved at their point of divergence. Each scale is broadly obovate to spatulate with a rounded apex and bore two seeds adaxially. The bract subtending the scale is 4.5–7.3 mm long and is fused to the scale for 1.4–2.0 mm. Each bract has an inflated keel-like base which projects abaxially between the seeds of adjacent scales. The fossil cones superficially resemble those of the extant Picea breweriana, yet differ from them anatomically. The new species also resembles Picea lahontense, a fossil compression from the Miocene Trout Creek Flora of south-central Oregon, but the different modes of preservation preclude meaningful comparison. Picea diettertiana, the only structurally preserved fossil cone of this genus previously described, is quite dissimilar in that it lacks a sclerotic pith.  相似文献   

15.
The time-dependence of Mn accumulation was confirmed in potato foliage (Solanum tuberosum. L.cv. Norland) grown in solution culture. Older leaves grown at 0.61 mM Mn had substantially higher Mn concentrations than younger leaves and stem samples. Levels of Mn in older leaves increased steadily from 4000 µg g–1 at one week to 8–10,000 µg g–1 at 6 weeks, but were relatively constant in the emerging leaves. Even foliage grown at low Mn levels (0.01 mM Mn) had 4 fold gradients in Mn concentration from younger (40 µg g–1) to older leaves (180 µg g–1).At 0.61 mM Mn, concentrations of 3–4000 µg g–1 in the youngest fully-developed leaves did not bring about any decline in yield, and levels of up to 5000 µg g–1 occurred in individual potato leaves before Mn toxicity symptoms were observed. Potato foliage grown at the high Mn had similar leaf numbers, but showed an increased stem length and smaller leaves than foliage grown at 0.01 mM Mn. In particular, the leaf area of the middle and lower leaf fractions were affected by the high Mn level.The ability of rapidly growing plants to withstand high concentrations of Mn is discussed in relation to the pattern of dry matter and Mn accumulation shown by potato foliage.  相似文献   

16.
Myrsine floridana produces all of its vegetative branches, other than those resulting from pruning or damage, by syllepsis, i.e. by the continuous development of an axillary meristem into a branch without an intervening stage of rest. These sylleptic branches, produced in series, have long and conspicuous hypopodia, broad pith connections with the parent axis, and expanded prophylls. Bud dormancy may be imposed when an axillary meristem is in the axil of the sixth or seventh youngest leaf of the parent shoot. Such axillary meristems may remain at the bud stage with only two pairs of scalelike leaves but these may later give rise to inflorescences or proleptic branches. Proleptic branches lack hypopodia, have narrow piths at their bases, and a series of leaves transitional from the original prophylls to normal foliage leaves within about ten leaves. Myrsine floridana has cortical bundles in the stem, related to the formation of minor lateral leaf traces. The hypopodia of sylleptic branches, since they are leafless, do not have cortical bundles.  相似文献   

17.
Fossils described in this treatment are the first structurally-preserved ovulate cones of Picea to be reported from the Tertiary. They are 5.0-5.8 cm long and 1.6-1.8 cm at their widest diameter. Numerous ovuliferous scales are arranged spirally around the axis and each bore two winged seeds. The bract subtending the scale is 4.0-7.0 mm long and is fused to the scale for 1.0 mm. The base of the bract is inflated on the abaxial side extending for about 1.0 mm between the seeds of the adjacent scales. Both the scales and their subtending bracts are recurved at their point of divergence from the axis. The ovuliferous scales taper gradually to a point, and the thickness of the tissues at the scale apex indicates that they were woody. Anatomically, the silicified cones are very similar to those of the Recent species and indicate that all important features of the latter had evolved by Oligocene time.  相似文献   

18.
Summary Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, is one of the few insect herbivores of American holly. Adult emergence is closely synchronized with leaf flush in spring, and females make numerous feeding punctures on and oviposit in new leaves. Larvae hatch in late May and June, but their feeding period and development are prolonged so that more than 80% of the mine enlargement occurs from January until March of the following year. We propose that this unusual life cycle reflects adaptation to constraints imposed by seasonal and age-related changes in chemical and structural defenses, and in nutritional quality of holly foliage. As holly leaves age, there is a shift in allocation of defense investment away from allelochemicals, including phenolic compounds and saponins, toward leaf sclerophylly, spinose teeth, and low foliar nitrogen and water. Rapid increases in leaf toughness and decreases in nutritional quality limit availability of leaf tissues for adult feeding and oviposition to a two-to threeweek phenological window during leaf flush. Mature holly foliage is a nutritionally poor resource by nearly all criteria known to affect food quality for herbivores. This may be the main reason for the prolonged larval development of P. ilicicola. Alternatively, winter feeding and pupation in spring may be adaptations which help to ensure synchrony of adult emergence with leaf flush. Repeated puncturing by female P. ilicicola does not render leaves more suitable for larvae, nor is it a means by which females sample leaf exudate to assess leaf quality prior to oviposition. Rather, leaf puncturing occurs mostly on leaves that are relatively high in soluble nitrogen, and is apparently a means by which females obtain protein and sugars prior to and during oviposition.The investigation reported in this paper (No. 85-7-8-208) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director  相似文献   

19.
A new Sciadopitys-like conifer is described on the basis of compression fossils of shoots and leaves found at the Smokey Tower locality in western Alberta. The specimens consist of long, strap-like leaves attached in apparent whorls and subtended by groups of scale leaves. Other scale leaves are borne in loose spirals on the shoots between whorls. These specimens represent the first record of Sciadopitys-like foliage from western North America. Comparisons are made with extant and extinct species of the genus Sciadopitys (Siebold and Zuccarini, 1841) and with the widely distributed fossil genus Sciadopitytes (Goeppert and Menge, 1883).  相似文献   

20.
Soil‐applied imidacloprid at full (125 g a.i. ha?1) and half approved doses gave levels of control of damson‐hop aphid, (Phorodon humuli), similar to that provided by foliar spray(s) of tebufenpyrad on the aphid‐susceptible dwarf hop cvs First Gold and Herald. On those cultivars, aphid control was unreliable on plots treated with quarter dose imidacloprid and was generally no better than on untreated plants. Aphids were virtually eliminated from the leaves by the end of July each year in all treatments consistent with the action of natural enemies. Aphid contamination of cones reflected the numbers on foliage at flowering time, but varied widely between years. Yields and percentage α‐acids content of dried hops were unaffected by the numbers of aphids on leaves early in the season and in cones at harvest, but aphid contamination reduced the economic values of crops by as much as 80%. Few P. humuli colonised the partially aphid‐resistant breeding line 23/90/08 before their numbers were regulated and consistent with natural enemy activity. Yields, percentage α‐acids content, and commercial value of harvested cones were similar in all treatments on 23/90/08 whether or not plants were treated with aphicides. The commercial risks posed by P. humuli preclude substantial reductions in aphicide usage on aphid‐susceptible dwarf hop cultivars, but future cultivars expressing a similar level of partial resistance to aphids as 23/90/08 should not need treatment with aphicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号