首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcandra is the only genus of Chloranthaceae hitherto thought to be vesselless. Study of liquid-preserved material of S. glabra revealed that in root secondary xylem some tracheary elements are wider in diameter and have markedly scalariform end walls combined with circular pits on lateral walls. Examination of these wider tracheary elements with scanning electron microscope (SEM) demonstrated various degrees of pit membrane absence in the end walls. Commonly a few threadlike fibrils traverse the pits (perforations); these as well as intact nature of pit membranes in pits at ends of some perforation plates are evidence that lack of pit membranes does not result from damage during processing. Some perforations lack any remnants of pit membranes. Although perforation plates and therefore vessels are present in Sarcandra roots, no perforations were observed in tracheary elements of stems or lignotubers. Further, stem tracheids do not have the prominently scalariform end walls that the vessel elements in roots do. Presence of vessels in Sarcandra removes at least one (probably several) hypothetical events of vessel origin that must be postulated to account for known patterns of vessel distribution in angiosperms, assuming that they are primitively vesselless. Seven (perhaps fewer) vessel origin events in angiosperms could account for these patterns; two of those events (Nelumbo and monocotyledons) are different from the others in nature. Widely accepted data on trends of vessel specialization in woody dicotyledons yield an unappreciated implication: vessel specialization has happened in a highly polyphyletic manner in dicotyledons, and therefore multiple vessel origins represent a logical extension backward in time. If a group of vesselless dictyoledons ancestral to other angiosperms existed, they can be hypothesized to have had a relatively homogeneous floral plan now that Sarcandra-like plants no longer need be imagined within that group. Sarcandra and other Chloranthaceae show that the borderline between vessel absence and presence is less sharp than generally appreciated.  相似文献   

2.
Perforation plates are reported in aerial and subaerial axes of Psilotum nudum and in aerial axes of Tmesipteris obliqua. In Psilotum, both perforations lacking pit membranes and perforations with pit membrane remnants were observed. Perforation plates in Psilotum may consist wholly of one type or the other. In Tmespteris, perforations have threadlike pit membranes or consist of porose pit membranes. Wide perforations alternating with narrow pits, a conformation observed in various ferns, were observed in Psilotum (subaerial axes). In Psilotum, perforations are more common in metaxylem than in protoxylem; perforations in protoxylem consist of primary wall areas containing small circular porosities or relatively large circular to oval perforations. There are no modifications in the secondary wall framework of protoxylem or metaxylem in Psilotum or Tmesipteris that would permit one to distinguish presence of perforations or perforation plates with light microscopy, and scanning electron microscopy (SEM) is required for demonstration of porose walls or perforations. The tracheary elements of the Psilotaceae studied have no features not also observed in other ferns with SEM.  相似文献   

3.
Perforation plates from ten species of seven genera of Hydrangeales sensu Thorne were studied using scanning electron microscopy (SEM). The presence of pit membranes in perforations ranges from abundant, as in Carpenteria and Hydrangea, to minimal, as in Deutzia, Escallonia and Philadelphus. Abnormally great pit membrane presence may result from the presence of secondary compounds that inhibit lysis, as in Quintinia serrata; such interference with the natural lysis process may or may not be evident from coarseness and irregularity of pit membrane surface and of threads composing the pit membrane remnants. The presence of pit membrane remnants in perforation plates is hypothesized to be a symplesiomorphy, found in a fraction of dicotyledons with scalariform perforation plates (but still in an appreciable number of species). Pit membrane remnant presence may represent incomplete lysis of primary wall material (cellulose microfibrils) in species that occupy highly mesic habitats, where such impedance in the conductive stream does not have an appreciable negative selective value. This physiological interpretation of pit membrane remnants in perforations is enhanced by the phylogenetic distribution as well as the strongly mesic ecological preferences of species that exemplify this phenomenon in dicotyledons at large. Families with pit membrane presence in perforations are scattered throughout phylogenetic trees, but they occur most often in basal branches of major clades (superorders) or as basal branches of orders within the major clades. Further study will doubtless reveal other families and genera in which this phenomenon occurs, although it is readily detected only with SEM. Phylogenetic stages in the disappearance of pit membrane remnants from perforation plates are described, ranging from intact pit membranes except for presence of pores of various sizes, to presence of membrane remnants only at lateral ends of perforations and in one or two perforations (arguably pits) at the transition between a perforation plate and subadjacent lateral wall pitting. Developmental study of the mechanism and timing of lysis of pit membranes in perforations, and assessment of the role of the conductive stream in their removal, are needed to enhance present understanding of vessel evolution. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 146 , 41–51.  相似文献   

4.
Xylem from roots and rhizomes of two infraspecific taxa of Pteridium aquilinum was studied by means of scanning electron microscopy (SEM). All tracheary elements proved to be vessels. End wall perforation plates were all scalariform, lacked pit membrane remnants in at least the central part of the perforation plate, and varied with respect to width of bars, from wide to tenuous, and with respect to presence of pit membrane remnants. In addition, porose pit membranes on walls that are likely all lateral vessel-to-vessel walls must be considered to be perforations also, although different from those on end walls. Lateral wall perforation plates, hypothesized by one worker on the basis of tylosis presence but denied by another on the basis of light microscopy, were confirmed by demonstration of pores with SEM. In addition, lateral walls of Pteridium vessels bear some grooves interconnecting pit apertures; this feature is newly figured by SEM for ferns. Lateral wall pitting that is not porose may either have striate thickenings of the primary wall or be smooth. Vessel presence and degree of specialization in Pteridium vessels may bear a relationship to the wide ecological tolerances of the genus.  相似文献   

5.
Hong-Fang Li  Shu-Miaw Chaw 《Flora》2011,206(6):595-600
For almost 150 years, the two monotypic genera Trochodendron and Tetracentron (Trochodendraceae) have been considered to share an unusual and primitive feature in angiosperms - the lack of vessels in their wood. Therefore, they have been classified in a basal position in the angiosperms. Our observations by light microscopy, low-vacuum environmental scanning electron microscopy (ESEM) and high-vacuum scanning electron microscopy (SEM) both in fresh and FAA-fixed materials consistently showed the presence of tracheary elements differentiated into two types in both genera. In Trochodendron, the tracheary elements can be divided into perforate vessel elements and imperforate fiber-tracheids and tracheids. The vessel elements show end and lateral walls. The pits on the end walls are elongate- broadened and do not have membranes or only a few remnants of them forming the perforation plates. The fiber-tracheids show crossfield pit pairs and sharp ends, and the tracheids show bordered pits. In Tetracentron, the tracheary elements comprise vessel elements and fibers. The vessel elements are similar to those of Trochodendron, whereas the fibers have no crossfield pit pairs but, rather, elliptical pits and sharp ends. Thus, both Trochodendron and Tetracentron are vessel bearing rather than vesselless, although their vessel elements are primitive.  相似文献   

6.
Scanning electron microscopy (SEM) photographs of thick sections from liquid‐preserved stems of Victoria cruziana and Euryale ferox show accretions of coarse fibrils on pit membranes of tracheids. The first‐deposited fibrils are randomly orientated; on top of them (facing the tracheid lumina) are axially orientated coarse fibrils. The two systems are interconnected. Axially orientated fibrils were more extensively observed in Euryale than in Victoria and tips of fibrils in Euryale extend over the pit apertures onto secondary wall surfaces. Tracheid–parenchyma interfaces bear rudimentary coarse fibrils on the tracheid side. End walls of Victoria tracheids have highly porose pit membranes, thinner and less complex than those of the lateral intertracheid walls. The structures reported in Victoria and Euryale are consistent with those concurrently reported for stems of other Nymphaeaceae. Although also present in Cabombaceae, the coarse fibrils are otherwise not reported for stems of angiosperms and are not yet reported in roots of any species. Pit membrane remnants in perforation plates of various woody dicotyledons represent a nonhomologous phenomenon. The accretions of coarse fibrils in stem tracheids of Nymphaeaceae do not appear to enhance conduction, although they do contain porosities interconnecting tracheids. Removal of pit membrane remnants from perforation plates of primitive dicotyledon woods by hydrolysis does, on the contrary, suggest conduction enhancement. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 52–57.  相似文献   

7.
Tracheary elements from macerations of roots and stems of one species each of five genera of Araceae subfamily Colocasioideae were studied by means of SEM (scanning electron microscopy). All of the genera have vessel elements not merely in roots, as previously reported for the family as a whole, but also in stems. The vessel elements of stems in all genera other than Syngonium are less specialized than those of roots; stem vessel elements are tracheid-like and have porose pit membrane remnants in perforations. The perforations with pit membrane remnants demonstrate probable early stages in evolution of vessels from tracheids in primary xylem of monocotyledons. The vessel elements with such incipient perforation plates lack differentiation in secondary wall thickenings between perforation plate and lateral wall, and such vessel elements cannot be identified with any reliability by means of light microscopy. The discrepancy in specialization between root and stem vessel elements in genera other than Syngonium is ascribed to probable high conductive rates in roots where soil moisture fluctuates markedly, in contrast with the storage nature of stems, in which selective value for rapid conduction is less. Syngonium stem vessels are considered adapted for rapid conduction because the stems in that genus are scandent. Correlation between vessel element morphology and ecology and habit are supported. Although large porosities in vessel elements facilitate conduction, smaller porosities may merely represent rudimentary pit membrane lysis.  相似文献   

8.
Xylem of the orchids studied provided unusually favorable material to demonstrate how conductive tissue evolves in monocotyledons. In the end walls of tracheary elements of many Orchidaceae, remnants of pit membranes were observed with scanning electron microscopy and minimally destructive methods. The full range from tracheids to vessel elements, featuring many intermediate stages, was illustrated with SEM in hand sections of fixed roots, stems, and inflorescence axes of 13 species from four subfamilies. Pit membranes in end walls of tracheary elements are porose to reticulate in roots of all species, but nonporose in stems of Cypripedioideae and Vanilloideae and porose to reticulate in stems of Orchidoideae and Epidendroideae. The distribution pattern of pit membranes and pit membrane remnants in end walls of tracheary elements of orchids parallels the findings of others. The position of Cypripedioideae and Vanilloideae as outgroups to Orchidoideae and Epidendroideae, claimed by earlier authors, is supported by clades based on molecular studies and by our studies. Little hydrolysis of pit membranes in tracheary element end walls was observed in pseudobulbs or inflorescence axes of epidendroids. The pervasiveness of network-like pit membranes of various extents and patterns in end walls of tracheary elements in Orchidaceae calls into question the traditional definitions of tracheids and vessel elements, not merely in orchids, but in angiosperms at large. These two concepts, based on light microscope studies, are blurred in light of ultrastructural studies. More importantly, the intermediate expressions of pit membranes in tracheary element end walls of Orchidaceae and some other families of angiosperms are important as indicators of steps in evolution of conduction with respect to organs (more rapid flow in roots than in succulent storage structures) and habitat (less obstruction to flow correlated with a shift from terrestrial to epiphytic).  相似文献   

9.
Lotus fibers are the isolated helical secondary cell wall thickenings from tracheary elements of lotus (Nelumbo nucifera Gaertn) petioles. In this study the anatomical characteristics of lotus petioles and microstructures of tracheary elements were studied using light microscopy (LM) and scanning electron microscopy (SEM). The results show that vascular bundles of lotus petioles are scattered throughout ground tissue. Their tracheary elements are of various sizes and there are several patterns of secondary wall thickening present. However, only secondary thickening in a ribbon-like helical pattern can be drawn out from the petiole to form lotus fibers for subsequent utilization. Study of the microstructure of the tracheary elements reveals that there are two pit structures present in the end walls in addition to pits with intact pit membranes: those with porose or web-like remnants pit membrane and those that lack pit membranes. This is an indication of the transitional stage between tracheids and vessel elements. This study provides supportive evidence that lotus fibers are found in both helically thickened tracheids and helically thickened primitive vessels.  相似文献   

10.
We have studied macerated xylem of ferns, supplemented by sections, by means of scanning electron microscopy (SEM) in a series of 20 papers, the results of which are summarized and interpreted here. Studies were based mostly on macerations, but also on some sections; these methods should be supplemented by other methods to confirm or modify the findings presented. Guidelines are cited for our interpretations of features of pit membranes. Fern xylem offers many distinctive features: (1) presence of numerous vessels and various numbers of tracheids in most species; (2) presence of vessels in both roots and rhizomes in virtually all species; (3) presence of specialized end walls in vessels of only a few species; (4) multiple end-wall perforation plates in numerous species; (5) lateral-wall perforation plates in numerous species; (6) porose pit membranes associated with perforation plates in all species; and (7) pit dimorphism, yielding wide membrane-free perforations alternating with extremely narrow pits. Multiple end wall perforation plates and lateral wall perforation plates are associated with the packing of tracheary elements in fascicles in ferns: facets of tips of elements contact numerous facets of adjacent elements; all such contacts are potential sites for conduction by means of perforations. This packing differs from that in primary xylem of dicotyledons and monocotyledons. Porosities in pit membranes represent a way of interconnecting vessel elements within a rhizome or root. In addition, these porosities can interconnect rhizome vessel elements with those of roots, a feature of importance because roots are adventitious in ferns as opposed to those of vascular plants with taproots. Fully-formed or incipient (small-to-medium sized porosities in pit membranes) perforation plates are widespread in ferns. These are believed to represent (1) ease of lysis of pit membranes via pectinase and cellulase; (2) numerous potential sites for perforation plate formation because of fasciculate packing of tracheary elements; (3) evolution of ferns over a long period of time, so that lysis pathways have had time to form; (4) lack of disadvantage in perforation plate presence, regardless of whether habitat moisture fluctuates markedly or little, because ferns likely have maintaining integrity of water columns that override the embolism-confining advantage of tracheids. Although all ferns share some common features, the diversity in xylem anatomy discovered thus far in ferns suggests that much remains to be learned.  相似文献   

11.
国产对囊蕨亚科(蹄盖蕨科)植物的管状分子   总被引:2,自引:0,他引:2  
郑玲  徐皓  王玛丽 《植物学通报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示,这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征,将该亚科的管状分子分为5种类型:(1)梯状穿孔板,无穿孔的二型性现象:(2)梯状穿孔板,有穿孔的二型性现象:(3)网状穿孔板:(4)梯状-网状混合的穿孔板:(5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种:部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料,发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异,管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定,而应根据穿孔板存在于端壁还是侧壁进行判断,即穿孔板仅存在于端壁的管状分子为导管分子:端壁和侧壁形态及结构分别相同,有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J.Sm.)Ching)与双盖蕨属管状分子的特征并不相似,显示了将单叶双盖蕨属从双盖蕨属独立出来归人对囊蕨亚科的合理性。根据管状分子的特征,推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属,而介蕨属(Dryoathyrium Ching)相对比较原始,单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

12.
Hong-fang Li Yi Ren 《Flora》2011,206(4):310-315
Scanning electron microscope (SEM) is necessary to demonstrate presence or absence of pit membranes in possible perforations or the type of pit membrane remnants in perforations in vessel element end-walls of angiosperms, but it was unconfirmed and questionable whether pit membrane absence in pits was affected by the processing and handling before SEM observations. To solve this question, the secondary xylem of four woody species from primitive angiosperms, Illicium henryi Diels. (Illiciaceae), Schisandra rubriflora (Franch.) Rehd. et Wils. (Schisandraceae), Tetracentron sinensis Oliv. and Trochodendron aralioides Sieb. & Zucc. (Trochodendraceae) was chosen and the following techniques were used: (1) fresh materials were examined in low-vacuum with ESEM. (2) Air-dried materials were examined both in low- and high-vacuum with ESEM. (3) Fresh materials fixed in several different fixatives were observed in low-vacuum, respectively. (4) Smooth surface of the material by paraffin section methods was examined in high-vacuum. (5) Materials treated by Jeffrey's Fluid were observed in high-vacuum.Pit membranes and remnants in perforations of fresh material were little different from that of treated materials. Absence of the pit membrane in perforations (pits) in the end-wall was not attributed to the processing and handling. Information of pit membranes and remnants in perforations in end-wall based on the SEM observation might be validly claimed.  相似文献   

13.
郑玲    徐皓    王玛丽 《植物学报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示, 这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征, 将该亚科的管状分子分为5种类型: (1)梯状穿孔板, 无穿孔的二型性现象; (2)梯状穿孔板, 有穿孔的二型性现象; (3)网状穿孔板; (4)梯状-网状混合的穿孔板; (5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种: 部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料, 发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异, 管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定, 而应根据穿孔板存在于端壁还是侧壁进行判断, 即穿孔板仅存在于端壁的管状分子为导管分子; 端壁和侧壁形态及结构分别相同, 有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J. Sm.) Ching)与双盖蕨属管状分子的特征并不相似, 显示了将单叶双盖蕨属从双盖蕨属独立出来归入对囊蕨亚科的合理性。根据管状分子的特征, 推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属, 而介蕨属 (Dryoathyrium Ching)相对比较原始, 单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

14.
Perforation plates and other vessel details as studied with scanning electron microscopy (SEM) have been reported for four species of Cornaceae (s.l.): similar features are shown by the four, suggesting that a more extensive sampling of the family might reveal similar phenomena. Perforation plates contain pit membrane remnants in the form of threads or, less commonly, laminar portions perforated by pores. When least well-represented, the pit membrane remnants are restricted to lateral ends of perforations and to the perforations transitional to lateral wall pitting. Perforations are all clearly bordered. Helical thickenings that do not form a continuous gyre are reported for the vessel walls ofAucuba. The presence of pit membrane remnants in vessel elements of Cornaceae correlates with the mesic habitats occupied by species in this family. The presence and type of pit membrane remnants reported by us in the three genera is very similar, although pit membrane remnants are doubtless a symplesiomorphy and thus not an indicator of relationships. The presence of pit membrane remnants in the three genera, however, does attest to the primitiveness of wood and other features of Cornaceae s.l.  相似文献   

15.
Perforation plates from 15 species of 10 genera with scalarifom perforation plates, representing three subfamilies of woody Ericaceae (Rhododendroideae, Arbutoideae, Vaccinioideae) were studied with scanning electron microscopy (SEM). In most of them, pit membrane remnants were present, but these remnants were less extensive than in the ericalean families Clethraceae, Cyrillaceae, and Sarraceniaceae. Pit membrane remnants in perforations of vessels of Ericaceae are characteristically found at lateral ends of the perforations and in perforations (which may alternatively be called pits) transitional to lateral wall pitting. Pit membrane remnants were most extensive in Enkianthus. Phylogenetic and physiological factors for vestigial membrane presence in the perforations are discussed. Helical thickenings on vessel walls as seen with SEM are figured and described for Leucothoe and Pieris, and their significance is assessed.  相似文献   

16.
SEM studies on vessels in ferns. 11. Ophioglossum   总被引:4,自引:0,他引:4  
With scanning electron microscopy (SEM), the nature of metaxylem vessel elements and tracheids was examined in Ophioglossum crotalophomides, 0. pendulum subsp. falcatum , and 0. vulgatum roots and rhizomes. Vessels were identified in all species. End walls of vessel elements, which bear perforations, are like lateral wall pitting of those elements in the secondary wall framework and differ only in absence of pit membranes or presence of pit membrane remnants. Some of the perforations contain pit membrane remnants that have large pores, small porosities, or are threadlike or weblike in structure. Dimorphic perforations were found in some vessel elements of rhizomes of 0. pendulum subsp. falcatum. Tracheids are very likely present in addition to vessels in all three species. The secondary wall framework of both tracheids and vessels is basically scalariform, although deviations in pattern are present. Vessel elements of Ophiglossum are entirely comparable to those of leptosporangiate ferns.  相似文献   

17.
Scanning electron microscopy (SEM) of tracheary elements of roots of five species from four genera of Marattiaceae and of the rhizome of one species revealed vessel elements present in all. The secondary wall framework of perforation plates is the same as that of lateral wall pitting for vessel elements in all species. Thus, no specialization is present in perforation plates of Marattiaceae compared to the simplified morphology of perforation plates of some leptosporangiate ferns (e.g., Dryopteridaceae, Polypodiaceae, and Pteridaceae). The difference between lateral wall pitting and perforation plates in tracheary elements of Marattiaceae cannot be seen by light microscopy (in which pit membranes are transparent), but is evident with SEM. Diversity in structure of perforation plates (especially the alternation of wide and narrow perforations within a plate) and presence of web-like pit membrane remnants are evident. Vessels are widespread in both leptosporangiate and eusporangiate ferns, although specialization in perforation plates (e.g., bars few and more widely spaced in lateral wall pitting of a given vessel element) is to be expected only in ferns of habitats with marked fluctuation in water availability. Vessels of Marattiaceae lack such specializations and are thus are correlated with the mesic habitats characteristic for the family.  相似文献   

18.
Metaxylem tracheary elements of roots have differentiation between end walls and lateral walls in both Euryale and Victoria End walls have narrower, more closely spaced bars and scalariform plates. primary walls of end walls (and, to a lesser extent, lateral walls) have striations that are thickened primary wall portions orientated in an axial direction. These striations are less common in Victoria than in Euryale. Although secondary wall strands between perforations occur in some dicotyledons, the report of primary wall striations is new; these can be seen with scanning electron microscopy (SEM) but not with light microscopy. Perforations occur irregularly and sometimes sparsely on end walls of tracheary elements of Victoria , but perforations were not observed in Euryale. Thus, Euryale satisfies one criterion for the presence of vessel (end wall different from lateral wall), whereas Barclaya satisfies another (perforations in end walls) and Victoria satisfies both. Vessel origins in Nymphaeaceae are important in illustrating that there may be multiple vessel origins in dicotyledons.  相似文献   

19.
SEM studies of roots and rhizomes of Triglochin (one species) and Maundia (monotypic) of Juncaginaceae and the sole species of Scheuchzeriaceae, Scheuchzeria palustris, reveals that vessels are present not only in roots, as previously reported, but also in rhizomes. The perforations contain pit membranes with pores of various sizes. Striate pit membranes, like those previously seen in Acorus, occur on pit remnants in peforations and on pit membranes of lateral walls in all genera studied. Grooves interconnecting pit apertures are illustrated for root tracheary elements of Triglochin; this is believed to be a first report of this feature for monocotyledons. The tracheary elements of Juncaginaceae and Scheuchzeriaceae are similar in their thick walls and narrow slitlike pits, lending support to the close relationship between the two families often claimed.  相似文献   

20.
SEM studies of tracheary elements of subfamily Orontioideae (Lysichiton, Orontium, Symplocarpus) of Araceae show unexpected features. The plants are entirely vesselless. There are small pores in pit membranes of end walls of tracheids in roots and stems, but pit membranes remain intact. End wall pit membranes of stems have a coarse fibrillar texture, somewhat reminiscent of (but different from) those of Nymphaeaceae and Cabombaceae. Acoraceae, which are also vesselless, represent the first branch of the monocot tree, according to phylogenies, and the orontioids form the next branch. Vessellessness is therefore a potentially plesiomorphic feature in monocots, but it may also be related to the highly mesic habitats of Acoraceae and the orontioids. Various other non‐submersed monocots have vesselless or near‐vesselless xylem. Sectioned xylem of Orontioideae is also very suggestive of stages in the development of the pit membranes of both end walls and lateral walls of tracheids: open networks of cellulosic fibrils apparently precede the addition of denser fibrillar meshes, key information in assessing to what extent perforations in scalariform perforation plates of vascular plants may stop formation at the open network stage, and to what extent a thicker pit membrane experiences lysis and disintegration as the vessel element matures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号