首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Three ramet clones of Solidago altissima were grown under greenhouse conditions to determine the effects of varying levels of attack by the goldenrod ball gallmaker (Eurosta solidaginis) on biomass allocation, leaf senescence rate and rhizome connections among ramets. The results, examined at both the individual ramet level and the clone level, showed that galled ramets became isolated from their clone through deterioration of rhizome connections. Gall effects were only observed at the ramet level although rhizome connection effects were detected at both the ramet and clone levels. The goldenrod ball gallmaker may therefore have little evolutionary impact on large clones but could appreciably affect newly established clones.  相似文献   

2.
Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.  相似文献   

3.
We carried out four separate studies using random amplified polymorphic DNA (RAPD) markers to analyse samples of Eucalyptus supplied by several different organisations. The objective was to examine the reproducibility of the RAPD technique and its ability to discriminate between individual genotypes for verification of clonal identities. We found that RAPD profiles that are unique to a genotype can be generated reliably and simply and that even closely related genotypes can be distinguished. In addition, in each of the four studies, we detected cases where the plant material studied had been mis-sampled or mis-labelled (i.e. the RAPD profiles were not consistent with the identification numbers): (1) ramets of a Eucalyptus grandis clone were found to be derived from 2 different clones; (2) ramets labelled as 2 different Eucalyptus hybrid clones were found to be the same clone, owing to a mis-planted clonal hedge; (3) samples supplied as a single progeny of a controlled E. nitens cross were derived from two crosses involving different pairs of parents; (4) mis-labelling was detected for ramets of 4 of a set of 10 clones of E. grandis and E. camaldulensis. For three of the four studies, the detection of genotype mis-identifications was unexpected, suggesting that labelling or sampling errors during the handling of plant material are a frequent occurrence, with potentially serious economic consequences.  相似文献   

4.
余鸽  龙凤来  刘建军  马青青  康永祥  黄建  曹庆 《生态学报》2017,37(14):4743-4753
很多竹类植物是典型的克隆植物,也是大熊猫的食物。研究典型竹子种群克隆结构的形成和发展对竹林的生产和抚育具有理论和实践意义,可为预测该竹林群落的演替趋势和大熊猫保护提供科学依据。利用SSR标记研究不同年龄A(7龄)、B(30龄)和C(60龄)巴山木竹种群的克隆结构和多样性,探讨小尺度范围内不同年龄巴山木竹种群的克隆结构及斑块的建立和发展。8对SSR引物共扩增出了118个位点,3个种群样地的256个样本共检测到了49个克隆(基因型),A、B和C种群分别检测出31、10个和8个克隆。随着种群年龄的增长,巴山木竹克隆面积增加,克隆数量减少;A和B样地各克隆分布格局为团块状,而C样地克隆既有团块状又有离散状。这一结果显示出在幼苗定居的初期,基株可能以短距离的克隆延伸为主从而呈现出团块状;而随着年龄的增长,克隆面积不断扩大,当复轴混生型的巴山木竹克隆受到强大的压迫时,基株可能会进行较多的单轴和长距离克隆延伸,呈现出离散状。Mantel检测和空间自相关分析都支持3个样地在小尺度范围内存在明显的克隆空间遗传结构。3个样地在10 m等级下显著的正相关空间遗传结构距离为3.1、28、48 m,X-轴截距为9.051、30.698和50.536,空间自相关系数的范围分别为0.1—0.167、0.008—0.703和0.006—0.735。由此可推断,随着年龄的增长,巴山木竹克隆斑块的规模在不断地扩大,同一克隆的分株数量增加,在均匀取样情况下,正相关空间遗传结构距离范围内取到具有相同基因型的可能性越大。A、B和C 3样地的基因型比率(G/N)为1、0.14和0.055,Simpson多样性指数(D)分别为1、0.876和0.744。这说明巴山木竹幼苗期基因型比例远远高于成年的竹林,随着年龄的增长巴山木竹克隆多样性虽有所降低,但由于有性繁殖的作用仍然保持了较高的多样性。聚类和主坐标分析均表明总体上各样地的克隆被聚为一类,但不同样地少数克隆的基因型有重叠和聚集,可推断出不同巴山木竹种群之间可能存在着基因流动和近似的克隆起源。  相似文献   

5.
Summary Armstrong (1982, 1983) predicted that all ramets within a clone should have the same ratio of biomass allocation to sexual reproduction versus vegetative growth. He presented data (1984) that he interpreted as showing that Solidago altissima ramets in a clone do have the predicted constant allocation ratio. Reanalysis of his methods shows that this conclusion was an artifact of his analysis. A simulation using random numbers and Armstrong's analysis showed the same pattern as his data. Data from S. altissima ramets of a single clone grown in a greenhouse experiment, using a different analysis, illustrated that the allocation ratios within a clone can be highly variable.  相似文献   

6.
Tidal wetlands worldwide are undergoing rapid invasions by tall-growing clonal grasses. Prominent examples are invasions by species of the genera Spartina, Phragmites and Elymus. The responsible physiological and ecological drivers of these invasions are poorly understood. Physiological integration (PI) is a key trait of clonal plants, which enables the exchange of resources among ramets. We investigated PI in Elymus athericus, which has been rapidly spreading from high-marsh into low-marsh environments of European salt marshes during the last decades. We applied a nitrogen stable-isotope approach to trace nutrient translocation between ramets in a factorial mesocosm experiment. The experiment was set up to mimic an invasion pattern commonly found in tidal wetlands, i.e. from high-elevated and rarely flooded into low-elevated and frequently flooded microenvironments. We tested for intraspecific variability in PI by including two genotypes of Elymus that naturally occur at different elevations within the tidal frame, a high-marsh (HM) and a low-marsh (LM) genotype. PI strongly increased offspring ramet aboveground and belowground biomass by 62 and 81%, respectively. Offspring ramets under drained conditions had 95% greater belowground biomass than those under flooded conditions. LM genotype offspring ramets produced 27% more aboveground biomass than HM genotypes. Offspring ramets were clearly more enriched in 15N under flooded versus drained conditions; however, this positive effect of flooding on δ15N was only significant in the LM genotype. Our findings demonstrate the importance of PI for the growth of Elymus offspring ramets and thereby for the species' capacity for fast vegetative spread. We show that offspring ramets under stressful flooded conditions are more dependent on nutrient supply from parent ramets than those under drained conditions. Our data furthermore suggest a higher degree of adaptation to flooding via PI in the LM versus HM genotype. In conclusion, we highlight the importance of assessing PI and intraspecific trait variability to understand invasion processes within ecosystems.  相似文献   

7.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

8.
Summary Genetic variation in resistance to 16 species of herbivorous insects was studied in 18 clones of Solidago altissima growing in an old field near Ithaca, New York, USA. Resistance to each insect, defined as the abundance of a species attacking a particular host genotype relative to other genotypes, was measured in both the natural stand and in two experimental gardens. The heritability of resistance was estimated by parent-offspring regression and sibcorrelation. The primary result was that clones differed in resistance to 15 of 16 insect species. The resistance of genotypes to these insect species remained relatively constant over the four years of the study. However, for only 10 of these resistances were the heritability estimates significantly different from zero. Thus the common assumption of plant-insect studies — that phenotypic variation in insect abundance is closely correlated with underlying genetic variation — is only conditionally true. There is heritable variation in resistance to many insects, but not all. The insects for which we observed heritable variation in plant resistance represent five different orders and several functional groups, including leaf chewers, phloem and xylem feeders, and gall formers. There was no apparent pattern between the degree of heritability of plant resistance and the destructiveness, feeding method, breadth of host range, or taxonomic group of the insects. The lack of marked heritable variation in resistance to some insects may be the result of (a) reduced variation caused by strong selection during prolonged or repeated insect outbreaks, and (b) genotype-environment interactions that obscure differences among genotypes.  相似文献   

9.
Genetic diversity is the foundation of all biodiversity, and the genetic variation within species is increasingly recognized as being important to ecosystem level processes. Recent research demonstrates that plant genotype influences above- and belowground communities as well as basic ecosystem functions. However, the extent to which plant genotypes create spatial mosaics of genetically mediated ecosystem processes in natural forests is uncertain. We use Populus tremuloides as a model system to demonstrate the importance of plant genotype on carbon and nitrogen cycling in natural systems. We identified 24 distinct P. tremuloides clones with multiple ramets across 25 km2 in southern Wisconsin, United States, using microsatellite makers. We then sampled clone leaf chemistry and belowground nutrient content and microbial extracellular enzyme activity. Aspen-induced variation in belowground carbon and nitrogen content, and microbial activity, varied widely among clones. Variation in green leaf chemistry and belowground microbial activity were correlated with genetic distance among clones, such that more genetically distant clones created more divergent patches of ecosystem processes. These data suggest that aspen genotypes create spatial mosaics of genetically mediated ecosystem functioning across natural landscapes and can therefore have evolutionary consequences for co-occurring species.  相似文献   

10.
To test whether sharing of resources occurs among connected ramets of the tall goldenrod, Solidago altissima, we examined the extent of clonal integration for nutrients. In a greenhouse experiment, two-ramet clones were grown in a triad of connected pots so that nutrients could be supplied to either sister ramet or to their old rhizome (mother rhizome). Mother rhizomes and their associated roots shared nutrients with daughter ramets; however, any nutrient sharing that occurred between sister ramets was too little to significantly affect their growth. In addition, sister ramets not only competed for nutrients through parental connections, but larger ramets inhibited the growth of smaller ramets. We suggest that, for tall goldenrod, a clonal growth strategy in which nutrients are not shared among sister ramets may increase genet fitness by reducing the rhizome production of ramets in poor-nutrient microsites. Consequently, the genet would produce relatively fewer ramets in unfertile areas and make better use of heterogeneous nutrient resources.  相似文献   

11.
The genus Reynoutria is represented by four taxa in the Czech Republic – R. japonica var. japonica and compacta, R. sachalinensis and R. × bohemica. Using isoenzyme analysis, we determined the degree of genotype variability in all taxa and compared clones of R. japonica var. japonica from the Czech Republic with those from Great Britain. While the rarely occurring tetraploid variety R. japonica var. compacta possesses low variability, the octoploid female clone of R. japonica var. japonica is genetically uniform in the 93 clones sampled and belongs to the same genotype that is present in the whole Europe. R. japonica var. japonica can be fertilized by the pollen of tetraploid R. sachalinensis and a hexaploid hybrid R. × bohemica is produced. In R. sachalinensis, 16 genotypes were found in the 50 clones sampled. R. × bohemica is genetically the most diverse taxon in the study area, with 33 genotypes recorded among 88 clones sampled.  相似文献   

12.
We present a literature survey of studies using molecular markers to investigate genet diversity and structure in clonal plants. The data from 40 studies comprised 45 species of which only two were studied by DNA methods, the rest by isozyme markers. Less than one third of the studies provided information about the spatial distribution of individual genets within populations, and only 12.5% of the studies used mapping of all ramets within plots or part of the population in combination with identification of multilocus genotypes. We also present two case studies. InGlechoma hederacea morphological criteria were used to select clones. Multi-samples of ramets within these “clones” turned out to be variable using isozymes indicating that these “clones” in most cases consisted of several genets. One individual multilocus genotype covered tens of square metres. InHylocomium splendens samples from 10×10 cm plots usually consisted of a mixture of multilocus genotypes, but occasionally the whole plot consisted of one genet.  相似文献   

13.
Clonal plants have the ability to spread and survive over long periods of time by vegetative growth. For endangered species, the occurrence of clonality can have significant impacts on levels of genetic diversity, population structure, recruitment, and the implementation of appropriate conservation strategies. Here we␣examine clone structure in three populations of Ambrosia pumila (Nutt.) Gray (Asteraceae), a federally endangered clonal species from southern California. Ambrosia pumila is a perennial herbaceous species spreading from a rhizome, and is frequently found in dense patches of several hundred stems in a few square meters. The primary habitat for this species is upper terraces of rivers and drainages in areas that have been heavily impacted by anthropogenic disturbances and changing flood regimes. RAPD markers were employed to document the number and distribution of clones within multiple 0.25 m2 plots from each of three populations. Thirty-one multi-locus genotypes were identified from the 201 stems sampled. The spatial distribution of clones was limited with no genotypes shared between plots or populations. Mean clone size was estimated at 9.10 ramets per genet. Genets in most plots were intermingled, conforming to a guerrilla growth form. The maximum genet spread was 0.59 m suggesting that genets can be larger than the sampled 0.25 m2 plots. Spatial autocorrelation analysis found a lack of spatial genetic structure at short distances and significant structure at large distances within populations. Due to the occurrence of multiple genets within each population, the limited spread of genets, and a localized genetic structure, conservation activities should focus on the maintenance of multiple populations throughout the species range.  相似文献   

14.
Plant–insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the rosette gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3–34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant–insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant–insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.  相似文献   

15.
Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species.  相似文献   

16.
Sexual reproduction may be advantageous for hosts that are preyed on or parasitized by enemies that are highly adapted to them. Sexual reproduction can create rare genotypes that may escape predation by virtue of rarity and can create variable progeny that may escape predation if enemies are specialized to only one genotype of host. Populations of the herbivorous thrips, Apterothrips apteris, have been shown to be adapted to individual Erigeron glaucus clones. Here, we show that thrips adapted to the parental clone could better use plant progeny of the “home” clone produced through selfing than progeny derived from selfing of other clones. Thus, despite recombination, progeny produced by selfing presented a resource that was similar to the parental phenotype with respect to use by adapted thrips. We also show that E. glaucus susceptibility to thrips has a genetic basis and then ask whether outcrossing provides a means for E. glaucus clones to escape attack by adapted thrips. When we compared the success of thrips on progeny produced by selfing or outcrossing of the home clone, we found that the merits or disadvantages associated with outcrossing were dependent on the susceptibility to infestation of the parental clones. Selfing by clones characterized by low infestations of thrips appeared to preserve resistant genotypes; all outcrossed progeny had, on average, higher infestation levels than selfed progeny. In contrast, outcrossed progeny of clones characterized by high infestations of thrips had either the same thrips density as progeny from selfing, when the pollen donor was a highly infested clone, or lower density, when the pollen donor was a low infestation clone. The advantages of outcrossing were caused by the alleles contributed to progeny rather than to progeny variability or rarity.  相似文献   

17.
Summary The costs and benefits, measured in terms of dry weight, of physiological integration between clonal ramets, were analysed in two experiments conducted on the clonal herb Glechoma hederacea. Firstly, integration between consecutively-produced ramets was examined in an experiment in which stolons grew from one set of growing conditions (either unshaded or shaded and either nutrient-rich or nutrient-poor) into conditions in which light or nutrient level was altered. Comparisons were made between the dry weight of the parts of the clones produced before and after growing conditions were changed, and the dry weights of the corresponding part of control clones subjected to constant growing conditions. In a second experiment, integration between two distinct parts of G. hederacea clones was investigated. In this experiment clones were grown from two connected parent ramets and the parts of the clone produced by each parent ramet were subjected independently to either nutrient-rich or nutrient-poor conditions. Ramets in resource-rich conditions provided considerable physiological support to those in resource-poor conditions. This was measured as a dry weight gain compared with the weight of the corresponding part of the control clones growing in resource-poor conditions. However, when stolons grew from resource-poor conditions into resource-rich conditions, there was no similar evidence of the resourcepoor ramtes receiving support from resource-rich ramets. Physiological integration did not result in dry weight gains when this would have necessitated basipetal translocation of resources.Because of the predominantly acropedal direction of movement of translocates in G. hederacea, the structure of the clone was important in determining the effectiveness of integration between ramets. Where physiological integration was effective, the cost to the supporting ramets in terms of dry weight was insignificant. Physiological integration allows clones to maintain a presence in less favourable sites with insignificant cost to ramets in favourable sites, thereby reducing the probability of invasion by other plants, and providing the potential for rapid clonal growth if conditions improve. Integrated support of ramets in unfavourable conditions also enables the clone to grow through unfavourable sites, thus increasing the probability of encountering more favourable conditions by wider foraging.  相似文献   

18.
Michael L. Cain 《Oecologia》1990,82(2):201-209
Summary For the rhizomatous perennial, Solidago altissima, I identified clonal fragments in the field, mapped ramet spatial locations, and documented patterns of ramet recruitment, growth, and mortality. Parent ramet size influenced the size and number of daughter ramets produced, and small ramets had lower survivorship and fecundity than large ramets. Similarly, small rhizomes tended to develop into small ramets, and ramets that survived to produce daughter ramets had longer parent-daughter rhizome connections than ramets that did not survive. In addition, most ramets that died during the growing season were connected to (genetically identical) ramets that persisted. There were large size inequalities among rhizomes, ramets, and clonal fragments. Inequalities in the size of ramets increased during the early part of the growing season, then decreased at the end of the season; similar patterns were observed for the growth of clonal fragments. In both instances, the decrease in size inequality could be attributed to the mortality of small individuals (ramets or clonal fragments). I found little evidence that ramet size hierarchies were structured by intraspecific competition. For example, path analyses and randomization tests indicated that size variation among S. altissima ramets was influenced little by the size of their near neighbors (but was influenced by parent size and rhizome size). In addition, within-season variation for the relative size and growth rate of individual ramets led to poor correlations between early and final ramet size; this result suggests that there was no stable hierarchy of dominant and suppressed ramets. I discuss implications of my results for contrasting interpretations of clonal plant population dynamics.  相似文献   

19.
Summary Ramets from six Solidago altissima clones of known resistance to the stem gallmaker Eurosta solidaginis were grown with and without supplemental nutrients. In a greenhouse experiment, mated female Eurosta were allowed to oviposit in ramets that were subsequently grown through flowering and then harvested to determine biomass allocation. Supplemental nutrients increased plant biomass but did not affect resistance to this gallmaking herbivore. This result does not conform to the plant carbon/nutrient balance hypothesis which predicts that enhanced mineral nutrition will indirectly cause a reduction in carbon-based defensive chemistry. Our results indicate a strong genetic basis to ball gallmaker resistance since modification of host phenotype did not influence susceptibility. We suggest that evaluating the degree of genotypic or environmental control of plant resistance will be especially helpful in clarifying the patterns of defensive chemical responses.  相似文献   

20.
This study examined the benefits associated with resource sharing among interconnected ramets spanning a soil salinity gradient. Clones of Hydrocotyle bonariensis, a rhizomatous dune perennial, expand into salt marsh communities from surrounding upland dune systems in coastal North Carolina. In rhizome-severing experiments conducted under both field and laboratory conditions, Hydrocotyle was shown to proliferate ramets under saline conditions, provided that these ramets were connected to other ramets growing in nonsaline conditions. Ramets that benefited from resource integration did not appear to be affected by local salt exposure in that these ramets were morphologically similar to those grown under nonsaline conditions. Supporting ramets incurred no net cost in terms of biomass or ramet production, but there was an increased percent allocation to roots and rhizomes. Ramets grown in saline conditions without the benefit of clonal integration showed high mortality and produced little or no net clonal growth. It is likely that the acropetal movement of water allowed Hydrocotyle clones to ameliorate the heterogeneous saline conditions associated with coastal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号