首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Formation of the cuticle from components of the secretory cavity and subcuticular wall was studied by transmission electron microscopy of glandular trichomes of Cannabis prepared by high pressure cryofixation-cryosubstitution. Secretory vesicles in the secretory cavity resembled those localized in the subcuticular wall as well as the vesicle-related material associated with the irregular inner surface of the cuticle and appeared to provide precursors for thickening of the cuticle. Some contiguous vesicles in the secretory cavity and subcuticular wall lacked a surface feature at their point of contact, supporting an interpretation of vesicle fusion. Fibrillar matrix from the secretory cavity contributed fibrillar matrix to the subcuticular wall, and persisted as residual fibrillar matrix associated with secretory materials coalesced to the thickened inner surface of the cuticle. Elongated fibrils arranged in uniformly spaced parallel pairs contributed to the organization of fibrillar matrix in the subcuticular wall. Striae were evident in the outer portion of the cuticle, and appeared to represent sites of degraded residual fibrillar matrix associated with secretory materials coalesced to the inner cuticular surface. This study supports an interpretation that contents of secretory vesicles from the secretory cavity contribute to formation of glandular cuticle.  相似文献   

2.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

3.
Early development of the secretory cavity of chemically fixed peltate glands in Humulus lupulus L. showed secretions with different densities, light, gray and dark, in the cytoplasm of disc cells and in the periplasmic space adjacent to the developing secretory cavity. Secretions were detected in the disc cell wall and subsequently in the developing secretory cavity under the subcuticular wall of the sheath. Light and gray secretions in the cavity possessed a membrane-like surface feature. Secretions were in contact with the irregular inner surface of the cuticle. Secretions contributed to the thickening of the cuticle, whereas the membrane-like surface feature contributed to a network of Cannabis striae distributed throughout the cuticle. This study supports an early development and organization of the secretory cavity in H. lupulus, parallel to those in Cannabis, and may represent common features for lipophilic glands in angiosperms.  相似文献   

4.
Delta 9-tetrahydrocannabinol (THC) localization in glandular trichomes and bracteal tissues of Cannabis, prepared by high pressure cryofixation-cryosubstitution, was examined with a monoclonal antibody-colloidal gold probe by electron microscopy (EM). The antibody detected THC in the outer wall of disc cells during the presecretory cavity phase of gland development. Upon formation of the secretory cavity, the immunolabel detected THC in the disc cell wall facing the cavity as well as the subcuticular wall and cuticle throughout development of the secretory cavity. THC was detected in the fibrillar matrix associated with the disc cell and with this matrix in the secretory cavity. The antibody identified THC on the surface of secretory vesicles, but not in the secretory vesicles. Gold label also was localized in the anticlinal walls between adjacent disc cells and in the wall of dermal and mesophyll cells of the bract. Grains were absent or detected only occasionally in the cytoplasm of disc or other cells of the bract. No THC was detected in controls. These results indicate THC to be a natural product secreted particularly from disc cells and accumulated in the cell wall, the fibrillar matrix and surface feature of vesicles in the secretory cavity, the subcuticular wall, and the cuticle of glandular trichomes. THC, among other chemicals, accumulated in the cuticle may serve as a plant recognition signal to other organisms in the environment.  相似文献   

5.
Development of the secretory cavity and formation of the subcuticular wall of glandular trichomes in Cannabis sativa L. was examined by transmission electron microscopy. The secretory cavity originated at the wall-cuticle interface in the peripheral wall of the discoid secretory cells. During the presecretory phase in development of the glandular trichome, the peripheral wall of the disc cells became laminated into a dense inner zone adjacent to the plasma membrane and a less dense outer zone subjacent to the cuticle. Loosening of wall matrix in the outer zone initiated a secretory cavity among fibrous wall materials. Membrane-bound hyaline areas, compressed in shape, arose in the wall matrix. They appeared first in the outer and subsequently in the inner zone of the wall. The membrane of the vesicles, and associated dense particles attached to the membrane, arose from the wall matrix. Hyaline areas, often with a conspicuous electron-dense content, were released into the secretory cavity where they formed rounded secretory vesicles. Fibrous wall material released from the surface of the disc cells became distributed throughout the secretory cavity among the numerous secretory vesicles. This wall material was incorporated into the developing subcuticular wall that increased five-fold in thickness during enlargement of the secretory cavity. The presence of a subcuticular wall in the cavity of Cannabis trichomes, as contrasted to the absence of this wall in described trichomes of other plants, supports a polyphyletic interpretation of the evolution of the secretory cavity in glandular trichomes among angiosperms.  相似文献   

6.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

7.
The capitate-sessile and capitate-stalked glands of the glandular secretory system in Cannabis, which are interpreted as lipophilic type glandular hairs, were studied from floral bracts of pistillate plants. These glands develop a flattened multicellular disc of secretory cells, which with the extruded secretory product forms the gland head and the auxiliary cells which support the gland head. The secretory product accumulates beneath a sheath derived from separation of the outer wall surface of the cellular disc. The ultrastructure of secretory cells in pre-secretory stages is characterized by a dense ground plasm, transitory lipid bodies and fibrillar material, and well developed endoplasmic reticulum. Dictyosomes and dictyosome-derived secretory vesicles are present, but never abundant. Secretory stages of gland development are characterized by abundant mitochondria and leucoplasts and by a large vacuolar system. Production of the secretory product is associated with plastids which increase in number and structural complexity. The plastids develop a paracrystalline body which nearly fills the mature plastid. Material interpreted as a secretion appears at the surface of plastids, migrates, and accumulates along the cell surface adjoining the secretory cavity. Extrusion of the material into the secretory cavity occurs directly through the plasma membrane-cell wall barrier.  相似文献   

8.
The morphology and the ultrastructure of the male accessory glands and ejaculatory duct of Ceratitis capitata were investigated. There are two types of glands in the reproductive apparatus. The first is a pair of long, mesoderm-derived tubules with binucleate, microvillate secretory cells, which contain smooth endoplasmic reticulum and, in the sexually mature males, enlarged polymorphic mitochondria. The narrow lumen of the gland is filled with dense or sometimes granulated secretion, containing lipids. The second type consists of short ectoderm-derived glands, finger-like or claviform shaped. Despite the different shape of these glands, after a cycle of maturation, their epithelial cells share a large subcuticular cavity filled with electron-transparent secretion. The ejaculatory duct, lined by cuticle, has epithelial cells with a limited involvement in secretory activity. Electrophoretic analysis of accessory gland secretion reveals different protein profiles for long tubular and short glands with bands of 16 and 10 kDa in both types of glands. We demonstrate that a large amount of accessory gland secretion is depleted from the glands after 30 min of copulation.  相似文献   

9.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

10.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

11.
Observations are reported on the ultrastructure of the buccal cavity, body cuticle, spermatids, spermatozoa, male genitalia, and caudal glands of Gonionchus australis. The buccal cuticle is a continuation of the pharyngeal cuticle. Anteriorly it is secreted by arcade tissue and overlaps the mouth rim; laterally it forms longitudinal tooth ridges. The non-annulated cephalic cuticle differs sharply from the remainder of the body wall cuticle. The cortical and basal zones become much thinner, while a largely structureless, lucent median zone expands to fill the bulk of the lips and lip flaps. Spermatids possess fibrous bodies, multimembrane organelles, mitochondria, and compact chromatin. The spermatozoa of G. australis resemble those of most other nematodes by the absence of the nuclear envelope and presence of fibrous bodies, mitochondria, and compact chromafin. The ejaculatory duct possesses microvilli. Two ejaculatory glands lie beside the duct. Two neurons are located within each spicule and each part of the paired gubernaculum. Caudal gland nuclei are large, with dispersed chromatin. The ducts of all three caudal glands are filled with secretory vesicles.  相似文献   

12.
Members of the cucujiform family Erotylidae possess a whole arsenal of compound integumentary glands. Structural details of the glands of the pronotum of Tritoma bipustulata and Triplax scutellaris are provided for the first time. These glands, which open in the posterior and anterior pronotal corners, bear, upon a long, usually unbranched excretory duct, numerous identical gland units, each comprising a central cuticular canal surrounded by a proximal canal cell and a distal secretory cell. The canal cell forms a lateral appendix filled with a filamentous mass probably consisting of cuticle, and the cuticle inside the secretory cell is strongly spongiose—both structural features previously not known for compound glands of beetles. Additional data are provided for compound glands of the prosternal process and for simple (dermal) glands of the pronotum. A combined defense plus anti-microbial function of the compound glands is tentatively proposed.  相似文献   

13.
Larvae of Paragordius varius (Leidy, 1851) were investigated using transmission electron microscopy, providing new observations concerning the cuticular structures of the preseptum, the postseptal gland and the pseudointestine. The cuticle is three‐layered but the basal layer is variable in structure. The hooks possess long, intracuticular roots and the stylets have apical teeth. Both postseptal gland and pseudointestine are secretory in function. The postseptal gland is composed of eight cells, which are all connected by a duct leading through the septum into the preseptum. Inside the postseptal gland, the duct wall has numerous pores. The pseudointestine is composed of four cells surrounding a cavity with an amorphous content. A flattened duct within a syncytium with five nuclei leads to a ventral pore close to the posterior end.  相似文献   

14.
The accessory glands ofAllacma fusca(L.) (Insecta, Collembola, Sminthuridae) consist of a series of secretory units that are arranged in parallel and open into the ejaculatory duct. Each unit is composed of microvillate cells stacked around a common cavity. Basal cells are involved in ion-control of fluids from the hemocoel to the cavity. The intermediate and apical cells, which have a laminar appearance and contain many microtubules, are involved in the structural integrity of the unit. Supporting cells ensheath the most apical cells. Large openings in the cuticle allow the gland secretion to flow into the ejaculatory duct lumen. These openings are protected by a porous cuticle different from that lining the epithelium of the ejaculatory duct. Conspicuous muscle fibers run along the lateroventral side of the ejaculatory duct beneath the insertion of the accessory glands. The fine structure of the accessory glands indicates that they are type I ectodermic glands as defined by Noirot & Quennedey (1974). Their function could be to control the fluidity of the material for spermatophore formation and to ensure the proper physiological conditions for spermatozoa stored in the ejaculatory duct lumen.  相似文献   

15.
《Zoology (Jena, Germany)》2014,117(5):319-328
Whereas in all other vertebrates the Müllerian ducts of genetic males are aborted during development, under the influence of Müllerian-inhibiting substance, in the caecilian amphibians they are retained as a pair of functional glands. It has long been speculated that the Müllerian gland might be the male accessory reproductive gland but there has been no direct evidence to this effect. The present study was undertaken to determine whether the caecilian Müllerian gland secretory proteins would bear antigenic similarity to secretory proteins of the prostate gland and/or the seminal vesicles of a mammal. The secretory proteins of the Müllerian gland of Ichthyophis tricolor were evaluated for cross-reactivity with antisera raised against rat ventral prostate and seminal vesicle secretory proteins, adopting SDS-PAGE, two-dimensional electrophoresis and immunoblot techniques. Indeed there was a cross-reaction of five Müllerian gland secretory protein fractions with prostatic protein antiserum and of three with seminal vesicle protein antiserum. A potential homology exists because in mammals the middle group of the prostate primordia is derived from a diverticulum of the Müllerian duct. Thus this study, by providing evidence for expression of prostatic and seminal vesicle proteins in the Müllerian gland, substantiates the point that in caecilians the Müllerian glands are the male accessory reproductive glands.  相似文献   

16.
Organization of dermal glands in adult water mites Teutonia cometes (Koch, 1837) was studied using light-optical, SEM and TEM methods for the first time. These glands are large and occur in a total number of ten pairs at the dorsal, ventral and lateral sides of the body. The slit-like external openings of the glands (glandularia) are provided with a cone-shaped sclerite, and are combined with a single small trichoid seta (hair sensillum), which is always situated slightly apart from the anterior aspect of the gland opening. Each gland is formed by an epithelium encompassing a very large lumen (central cavity) normally filled with secretion that stains in varying intensity on toluidine blue stained sections. The epithelium is composed of irregularly shaped secretory cells with an electron-dense cytoplasm and infolded basal portions. The cells possess a large irregularly shaped nucleus and are filled with tightly packed slightly dilated cisterns and vesicles of rough endoplasmic reticulum (RER) with electron lucent contents. Dense vesicles are also present in the apical cell zone. Some cells undergo dissolution, occupy an upper position within the epithelium and have a lighter cytoplasm with disorganized RER. Muscle fibers are regularly present in the deep folds of the basal cell portions and may serve to squeeze the gland and eject the secretion into the external milieu. The structure of these dermal glands is compared with the previously described idiosomal glands of the same species and a tentative correlation with the glandularia system of water mites is given. Possible functions of the dermal glands of T. cometes are discussed.  相似文献   

17.
Infection of nematodes byDactylaria haptotyla, a nematode-trapping hyphomycete, was studied by electron microscopy. The cytoplasm of the adhesive knob in the fungus contained a number of electron-dense, membrane-bound vesicles, 0.2–0.5 µm in diam. The vesicles were rarely seen in the stalk cell or vegetative cell cytoplasm. When the adhesive knob came into contact with the nematode's cuticle, it secreted an adhesive which was seen in ultrathin sections between the knob and the cuticle as an amorphous mass. At the same time, electron-dense vesicles in the cytoplasm were reduced in number and many small vacuoles developed. Soon after capture of a nematode, the cell wall of the adhesive knob became obscure at the prospective site of penetration, where a vesicle, 0.7 µm in diam, was found in serial thin sections of the knob's cytoplasm. At the site facing the vesicle, the peripheral part of the nematode's cell exhibited a high electron density. The vesicle, which appeared to be derived from smaller electron-dense vesicles coalesced with each other, released its enzymic contents toward the captured nematodes before penetration by the fungus.  相似文献   

18.
In female alates of Macrotermes annandalei, two types of abdominal glands are involved in the secretion of sex pheromone. Tergal glands are found at the anterior margin of tergites 6-10 and posterior sternal glands (PSGs) are located at the anterior margin of sternites 6-7. The cytological features of both types of glands are quite similar. The fine structural organization of PSGs is studied more precisely and described for the first time. The glandular cuticle is pitted with narrow apertures corresponding to the openings of numerous subcuticular pouches. Several Class 3 glandular units open in each pouch. One canal cell and one secretory cell make an individual glandular unit. The canal cell is enlarged apically and is connected with the other canal cells to form a common pouch. Based on the structural features found in these glands, we propose a common secretory process for PSGs and tergal glands. During the physiological maturation of alates inside the nest, secretory vesicles amass in the cytoplasm of secretory cells, while large intercellular spaces collapse the cuticular pouches. At the time of dispersal flight, pouches are filled with the content of secretory vesicles while intercellular spaces are sharply reduced. After calling behavior, no secretion remains in the glands and pouches collapse again, while secretory cells are drastically reduced in size. The structure and the secretory processes of PSGs and tergal glands are compared to those of abdominal sexual glands known in termites.  相似文献   

19.
The fine structure of Gnathostomulid reproductive organs   总被引:1,自引:0,他引:1  
Summary The male copulatory organs of five species of Gnathostomulida Scleroperalia have been studied by TEM techniques. These observations provide a more solid basis for classification in the light microscope: inLabidognathia longicollis (fam. Mesognathariidae) the stylet is composed of eight, and inSemaeognathia sterreri, Gnathostomula jenneri, Gnathostomula mediterranea andGnathostomula microstyla (Gnathostomulidae) of ten stylet rods. Each rod consists of a microtubule-filled inner rod, and of an outer rod, filled with crystallized inclusions. The inner rods are continuous with eight — or ten — rod formation cells which are located in the proximal stylet sack. Bipartition of rods occurs by a longitudinal invagination of the basement lamina, underlying the rod cells and the gland cells and continuous with that of the body wall epithelium. InLabidognathia, the outer rods are interlocked, in Gnathostomulidae, the stylet rods are surrounded by an extracellular (cuticular) tube-like stylet sheath of variable fine structure, which is believed to provide extra rigidity. In the species investigated, one single stylet gland, consisting of a monolayered epithelium showing different gland cell types, surrounds the stylet. In the apical gland cell portions, medially and distally membrane-bound secretory granules lie adjacent to the stylet sheath. In Gnathostomulidae, two anterior gland cells are seen in connection with the formation of the stylet sheath. In the muscular sheath the cross-striated fibers, basically derived from the longitudinal body wall musculature, show a tendency towards helical and circumferential arrangement. Musculature is especially prominent in the proximal stylet sack, which is rather a propulsive element than a sperm-storing vesicle, and lacks glands. InGnathostomula species, atrial cells underlie the distal tip of the stylet. The entrance into the male opening is lined with ciliary receptor cells and specialized gland cells.Stylet evolution in Scleroperalia is characterized by progressive differentiation of the muscular sheath, in particular of the proximal stylet sack, and of the stylet — the occurrence of a stylet sheath is seen in connection with increasing diversity of stylet shape.Abbreviations ac atrial cell(s) - ag anterior gland cell(s) - b bursa - bl basal lamina - c rod-crystal in outer rod - cj cuticle of jaw - d desmosome - di dictyosome - e body wall epithelium - ej pharyngeal epithelium - g stylet gland (cell) - gm median gland cell - i gut (cell) - ir inner rod - jc junctional complex - m muscular layer - mo male opening - mv microvillar protrusions - nu nucleus - o ovary - or outer rod - po proximal opening of the proximal stylet sack - ps proximal stylet sack - r stylet rod - rc rod cell - sg secretory granule - sj septate junction - sp sperm - ss stylet sheath - st stylet - te testes - v ventral - z centriole  相似文献   

20.
The disc cell wall facing the secretory cavity in lipophilic glands of Cannabis was studied for origin and distribution of hyaline areas, secretory vesicles, fibrillar matrix and particulate material. Secretions evident as light areas in the disc cell cytoplasm pass through modified regions in the plasma membrane and appear as hyaline areas in the cell wall. Hyaline areas, surrounded with a filamentous outline, accumulate near the wall surface facing the secretory cavity where they fuse to form enlarged hyaline areas. Fibrillar matrix is related to and may originate from the dense outer layer of the plasma membrane. This matrix becomes distributed throughout the wall material and contributes in part to the composition of the surface feature of secretory vesicles. Thickening of the cell wall is associated with secretions from the disc cells that facilitates movement of hyaline areas, fibrillar matrix and other possible secretions through the wall to form secretory vesicles and intervesicular materials in the secretory cavity. The outer wall of disc cells in aggregate forms the basilar wall surface of the secretory cavity which facilitates the organization of secretory vesicles that fill the secretory cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号