首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome numbers for a total of 54 individuals representing 13 genera and 40 species of Cactaceae, mostly in tribe Trichocereeae, are reported. Five additional taxa examined belong to subfamily Opuntioideae and other tribes of Cactoideae (Browningieae, Pachycereeae, Notocacteae, and Cereeae). Among Trichocereeae, counts for 35 taxa in eight genera are reported, with half of these (17 species) for the genus Haageocereus. These are the first chromosome numbers reported for 36 of the 40 taxa examined, as well as the first counts for the genus Haageocereus. Both diploid and polyploid counts were obtained. Twenty nine species were diploid with 2n=2x=22. Polyploid counts were obtained from the genera Espostoa, Cleistocactus, Haageocereus, and Weberbauerocereus; we detected one triploid (2n=3x=33), nine tetraploids (2n=4x=44), one hexaploid (2n=6x=66), and three octoploids (2n=8x=88). In two cases, different counts were recorded for different individuals of the same species (Espostoa lanata, with 2n=22, 44, and 66; and Weberbauerocereus rauhii, with 2n=44 and 88). These are the first reported polyploid counts for Haageocereus, Cleistocactus, and Espostoa. Our counts support the hypothesis that polyploidy and hybridization have played prominent roles in the evolution of Haageocereus, Weberbauerocereus, and other Trichocereeae.  相似文献   

2.
A total of 134 chromosome counts representing 21 taxa of the genus Arnica are presented. Counts are published here for the first time for A. lonchophylla (n = 38) and A. nevadensis (n = 38). Ten previously unreported counts representing 9 taxa are also presented. The basic chromosome number of the genus is x = 19. With respect to chromosome number, the genus exhibits maximum diversity in the Rocky Mountains of Colorado and Wyoming. Arnica angustifolia, A. cordifolia and A. mollis are recognized as mature polyploid complexes, containing several wide ranging polyploid races and only a few highly restricted or scattered diploid races. Within the genus in general, diploids tend to be restricted to unglaciated areas while polyploids are much wider ranging, particularly in unglaciated areas.  相似文献   

3.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

4.
Turner, B. L., and Olin S. Fearing. (U. Texas, Austin.) Chromosome numbers in the Leguminosae. III. Species of the Southwestern United States and Mexico. Amer. Jour. Bot. 47(7) : 603–608. Illus. 1960.—Chromosome counts for 43 species of the Leguminosae from the southwestern United States and Mexico have been reported. These include first reports for 42 taxa of which 16 are for the subfamily Mimosoideae. Olneya tesota (2n = 18) is the only new generic count listed. Chromosome reports of particular significance include a single polyploid count for a North American species of Acacia, as well as diploid and tetraploid counts for closely related taxa in this genus. Four species of the genus Schrankia were found to be diploid with In = 26, indicating a base of x = 13 instead of the x = 8 reported by some previous workers. Leucaena pulverulenta was found to have a diploid count of 2n = 56 indicating a base of x = 14.  相似文献   

5.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

6.
Chromosome numbers were determined for 125 accessions of 92 taxa of Mimosa from all five of Barneby??s (Mem New York Bot Gard 65:1?C835, 1991) taxonomic sections. For 69 species, 1 subspecies and 8 varieties, chromosome numbers are presented for the first time, for 6 species and 1 variety previously published data have been confirmed and for 3 species and 2 varieties different numbers were found. Results show that 74% of the accessions were diploid (2n?=?2x?=?26) and 26% polyploid, these mostly tetraploid (2n?=?4x?=?52) but with two triploid (2n?=?3x?=?39). These results double the number of Mimosa species for which the chromosome count is known from less than 10% previously reported to more than 20%, representing an important advance in the cytotaxonomy of this legume genus. These results together with literature data show that ca. 78% of Mimosa species are diploid. Polyploids are present in most of the taxonomic sections and in different lineages across the genus. No particular chromosome number is restricted to a given section or lineage. A possible relation between geography, species distribution, polyploidy and invasiveness was detected, however, further studies based on more accessions, especially from higher latitudes, are required before firm conclusions can be drawn.  相似文献   

7.
Considerable karyotypic differentiation has occurred within the group of taxa comprising the eastern North American members of the genus Claytonia. Patterns of karyotypic differentiation are congruent with evolutionary groupings based on flavonoid chemistry, particularly at the diploid level. The 2n = 16 diploid chemotype found in both C. caroliniana and C. virginica possesses a karyotype composed entirely of metacentric chromosomes, while acrocentric chromosomes predominate in the karyotypes of the 2n = 12 and 2n = 14 diploid chemotypes of C. virginica. The 2n = 16 diploid also has a karyotype significantly larger than those of the other diploid cytotypes. Polyploid karyotypes of both species show varying degrees of divergence from their presumed diploid progenitors.  相似文献   

8.
Our study (survey, atlas of 136 microphotographs and 67 drawings) points out the actual chromosome numbers of 82 taxa of the genus Pinguicula L. They were gathered from literature and critically examined. In addition, numerous counts are published for the first time. They represent about 80% of all the taxa known. The basic chromosome numbers are x = 6, 8, 9, 11, and 14; the ploidy levels are 2n (diploid), 4n (tetraploid), 8n (octoploid) and 16n (hexadecaploid). The basic number x = 6 is a one-off, x = 8 and 11 are the most frequent in the genus; x = 14 indicates a hybridogenous differentiation process in the past. The caryological differentiation—chromosome numbers and ploidy level—is discussed with regard to distribution pattern, growth type, and infrageneric classification (at the level of sections).  相似文献   

9.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

10.
Documented chromosome numbers and meiotic behavior were recorded for 23 taxa of 18 species of Cactaceae of south-western United States and adjacent Mexico. All taxa are diploid (n = 11) or polyploid (n = 22, 33, 44), and with regular meiotic behavior.  相似文献   

11.
12.
An electrophoretic study of isozyme number for seven soluble enzymes revealed extensive gene duplications in eight diploid species of American Eupatorium belonging to three morphological groups. The enzymes isocitrate dehydrogenase, phosphoglucomutase, phosphoglucose isomerase, 6-phosphogluconate dehydrogenase, and shikimate dehydrogenase occur as three to six isozymes in all species, whereas the minimal conserved number typical of diploid plants is two isozymes for each. Fructose 1, 6-biphosphate aldolase is expressed as multibanded pattern suggesting fixed heterozygosity in all examined species. It was not possible to document gene duplication for triosephosphate isomerase from the electrophoretic patterns. All species examined have a chromosome number of 2n = 20, which has been regarded as the basic diploid number for Eupatorium. However, the detection of extensive duplications suggests that 2n = 10 may be the original diploid chromosome number in Eupatorium and that plants with 2n = 20 are of polyploid origin. This hypothesis would mean that extensive duplications at isozyme gene loci have been maintained since the origin of the genus, despite chromosomal diploidization having occurred.  相似文献   

13.
The chromosome numbers of the 24 species of sect.Pelargonium were determined from field collected and cultivated plants of known localities in S. Africa. Twelve species are diploid (2n = 22), eight tetraploid (2n = 44), one hexaploid (2n = 66), and three octoploid (2n = 88). The chromosome numbers correlate well with the proposed subdivision of sect.Pelargonium. Its chromosomes are relatively small (1.0–1.5 µm) in comparison to most of the other sections, and its diploid karyotype is considered to be primitive. The occurrence of the basic number x = 11 in this section, in other sections of the genus, and in related genera (Monsonia, Sarcocaulon) leads to the conclusion that x = 11 probably is basic for the whole genus. — The pollen meiosis, microsporogenesis and pollen fertility of the diploid species is normal, with the exception of one, possibly young taxon from the Greyton Nature Reserve. The tetraploid species could be of autoploid origin, the higher polyploids exhibit a mixed auto-alloploid nature. — The 20 diploid and tetraploid species have a relatively small distribution range, most of them occur in the SW. Cape Province of South Africa. This area may therefore be considered as the centre of origin of the genus. Three of the four high polyploid species occupy rather large areas.
Untersuchungen zur Karyologie und Mikrosporogenese der GattungPelargonium, 1.  相似文献   

14.
Torres , Andrew M. (U. Wisconsin, Milwaukee.) Cytotaxonomy of cespitose zinnias. Amer. Jour. Bot. 49(10): 1033–1037. Illus. 1962.—The results of hybridization studies among 5 of the 6 cespitose species of Zinnia are reported. Analyses of meiosis in the F1 hybrids suggest there are 2 genomes, A and B, in the polyploid taxa. The A genome apparently exists in the diploid state in 2 species, but the B genome is known only from polyploid taxa. The chromosome number of Z. oligantha (2n = 20) is reported for the first time.  相似文献   

15.
Menzel , Margaret Y. (Florida State U., Tallahassee), and James B. Pate . Chromosomes and crossing behavior of some species of Sansevieria. Amer. Jour. Bot. 47(3) : 230—238. Illus. 1960.–Approximately 20 species (28 clones) studied were diploids, tetraploids or hexaploids of the basic numbers x = 20; about 40% of the taxa were polyploid. All species had similar karyotypes, except for chromosome number. Five of 12 combinations of diploid species gave fertile F1 hybrids; 4 studied cytologically showed 20 bivalents at metaphase I. Two triploid interspecific hybrids showed high trivalent frequencies. In contrast, multivalent formation in polyploid species was variable but rather low. Morphological relationships appeared reticulate among and between diploids and polyploids and did not coincide with barriers to crossing or to hybrid fertility. The following tentative hypothesis concerning relationships in the genus is proposed: Sansevieria is monophyletic and speciation has proceeded through genetic variation and hybridization at the diploid level and by allopolyploidy (of the segmental type) ; a low level of chromosome differentiation has accompanied speciation such that complete pairing occurs in diploid hybrids, but considerable preferential pairing occurs in allopolyploids. The occurrence of both polyploid and hybrid vigor, the fertility of hybrids between species differing greatly in morphology and physiology, and the high potential for vegetative propagation make the genus a favorable subject for breeding based on interspecific hybridization.  相似文献   

16.
Chromosome counts are reported for 33 species from all four sections of the genus Haplopappus in South America. These include first reports for 28 species and two putative hybrids. All chromosome numbers reported herein are 2n = 5II, with the exception of H. prunelloides with 2n = 6II. Unlike the North American species, the morphological diversity of South American taxa is not concomitant with chromosomal variation.  相似文献   

17.
Abstract The genus Kalimeris with a diagnostic character of short or inconspicuous pappus consists of two sections, Asteromoea and Cordifolium. As a result of 6PGD isozyme analysis, sect, Asteromoea, including 2 × and poly-ploid taxa from 5 × to 8 ×, show similar cytosolic isozyme multiplicity and share a monomorphic locus. The data suggest that gene duplication of polyploid members was derived from a common ancestor. K. miqueliana, belonging to sect. Cordifolium. also possessed a gene duplication in 6PGD, though significant differences were detected in electrophoretic mobility between the sections. The occurrence of gene duplication in East Asian diploid Astereae leaves intact the validity of the allopolyploid-origin hypothesis of n= 9, which was rejected by Gottlieb (1981a) in American Astereae.  相似文献   

18.
ABSTRACT

The main goals of this research were to reconstruct the infrageneric phylogeny of the genus Primula based on both nuclear and chloroplast DNA sequences, and to use the resulting phylogenies to elucidate the evolution of breeding systems, morphological characters, chromosome number, and biogeographic distribution in the genus. In this paper, the results of a pilot study based on the nuclear ribosomal Internal Transcribed Spacer (ITS) region are described. ITS sequences from 21 taxa produced a number of variable characters sufficient to resolve relationships among sections. The resulting phylogeny confirmed the monophyly of sections Auricula and Aleuritia. Sections Armerina, Proliferae, Crystallophlomis, Parryi, and Auricula, with a base chromosome number of x = 11, and sect. Aleuritia, with a base chromosome number of x = 9, formed two well supported clades. The ITS topology also suggested that leaves with revolute vernation, previously believed to be a derived state, might represent the ancestral condition in Primula, with later reversals to the involute condition. Finally, this initial ITS tree provides preliminary support to the proposed role of the widespread, diploid and heterostylous P. mistassinica as having given origin to the polyploid, homostylous P. incana and P. laurentiana.  相似文献   

19.
Chromosome counts were determined for 46 populations ofBiscutella representing 28 taxa. The genus was found to contain diploid taxa with 2n = 12, 16 and 18, tetraploid taxa with 2n = 36 and hexaploid taxa having 2n = 54.B. laevigata L. s. l. consists of diploid and tetraploid populations which are poorly differentiated morphologically. TetraploidB. laevigata s. l. and hexaploidB. variegata Boiss. & Reuter (s. l.) are characterized by chromosomal instability. The variation in chromosome numbers and the occurrence of polyploidy is discussed in relation to the taxonomy of the genus. An investigation of the breeding system showed that most of the annual species were self-compatible and partly inbreeding and most of the perennial species self-incompatible and, therefore, outbreeding, while one annual species,B. cichoriifolia Loisel., showed both systems.  相似文献   

20.
A survey of haploid chromosome numbers of 18 North American taxa of Oxalis section Ionoxalis was initiated to determine the relationship between ploidal level, geographic distribution, and the occurrence of tristyly and distyly. Although chromosome numbers in the section are variable, the majority of tristylous populations are diploid. Among the distylous taxa a greater diversity of ploidal levels exists, with the higher chromosome numbers predominating. In section Ionoxalis the majority of the tristylous taxa are geographically restricted endemics of southern Mexico, while the distylous taxa have more extensive distributions ranging to the north. The association of diploidy and geographic endemism in the majority of the tristylous taxa suggests that these species are relictual. A few widespread tristylous taxa are polyploid, and often somewhat weedy. The probable derivation of widespread polyploid species from the restricted diploid endemics of southern Mexico appears to have been accompanied by the evolution of distyly from tristyly. The frequent association of polyploidy and distyly in section Ionoxalis has apparently resulted from the concurrence of two evolutionary trends: increase in ploidal level and the derivation of distyly from tristyly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号