首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

2.
In this paper we examine some ecological consequences and phenotypic correlates of flower size variation in wild radish, Raphanus sativus. Mean corolla diameter varied significantly among individuals within natural populations of R. sativus in California. On the average, almost 40% of flower biomass was allocated to corolla tissue. In field experiments, pollinator visitation increased significantly with corolla size. Large flowers also accumulated more nectar when pollinators were excluded from plants. In three populations, corolla size was positively correlated with allocation to pollen per flower (either anther weight or pollen grain number), but there was usually no phenotypic relationship between corolla size and several measures of female allocation (ovule number per flower, proportion fruit set, and total seed mass per fruit). Plants growing in the field produced fewer large flowers per unit of stem, and stem biomass was negatively related to corolla size for plants grown under controlled greenhouse conditions. Male and female fitness may covary differently with allocation to attractive floral features in species such as R. sativus, where seed production is often limited by resources rather than by pollen.  相似文献   

3.
In protogynous plants, female flowers of early blooming plants are at a reproductive disadvantage because they cannot set fruit due to the lack of available pollen. To study this phenomenon, gender expression of the monoecious herb Sagittaria trifolia was investigated over the entire flowering season in two field and two cultivated populations in Hubei and Hunan Provinces, China. In racemes of S. trifolia, flowers open sequentially from bottom to top, with female flowers opening first followed by male flowers. This creates a temporal separation of sexes in the species. Under field conditions small plants are often male, with production of both male and female flowers increasing with plant size. Femaleness increased among sequential inflorescences since female flower production increased whereas male flower production did not. Seed production was greater in large inflorescences because they contain more female flowers, and the number of ovules increased in female flowers at basal positions within the raceme. A consistent pattern of high seed set was observed in flowers from both field and cultivated populations. About 1 % of unfertilized ovules resulted from no pollination and 2 % of the seeds produced were only partly developed due to resource limitation. In the first inflorescence of the six experimental populations, 6.7-40.0 % of individuals produced only male flowers, and female flowers of 1.9-6.5 % individuals were aborted. The occurrence of male flowers in early blooming inflorescences could be an adaptive strategy to conserve resources and enhance pollination of female flowers in protogynous S. trifolia.  相似文献   

4.
The bulbous geophyte Fritillaria montana is partially self‐compatible and capable of switching gender. Small flowering plants produce only single male flowers, but larger plants produce hermaphrodite or, rarely, male and hermaphrodite flowers. Eight populations in peninsular Italy were sampled to determine the frequency and size distributions of male and hermaphrodite plants, and to determine the relationship of plant size to male and hermaphrodite flower production. Male plants were significantly smaller than hermaphrodites and made up 14.5–47.8% (100% in one small population) of flowering plants within populations. There were no significant differences in male fitness among female‐sterile and hermaphrodite flowers, as they both possessed full and comparable fertilizing power. Therefore, the gender variation observed in F. montana is likely to depend on resource‐dependent sex allocation. From an evolutionary perspective, we highlight the occurrence of similar mechanisms of gender variation in other representatives of the order Liliales. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 323–333.  相似文献   

5.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

6.
 Aquatic plants are well known for their high degree of phenotypic plasticity in vegetative structures, particularly leaves. Less well understood is the extent to which their sexuality can be modified by environmental conditions. Here we investigate gender plasticity in the European clonal monoecious aquatic Sagittaria sagittifolia (Alismataceae) to determine how floral sex ratios may vary with plant size and inflorescence order. We sampled two populations from aquatic habitats in East Anglia, U.K. and measured a range of plant attributes including ramet size and the number of female and male flowers per inflorescence. The two populations exhibited similar patterns of phenotypic gender, despite contrasting patterns of total allocation to female and male flower number. Plants produced male-biased floral sex ratios but female flower number increased from the first to the second inflorescence whereas male flower number decreased. Size-dependent gender modification occurred in both populations, but the patterns of allocation to female flower production differed between the two populations. Our results are consistent with the view that monoecy is a sexual strategy that enables plants to adjust female and male allocation in response to changing environmental conditions. Received September 16, 2002; accepted October 23, 2002 Published online: March 20, 2003  相似文献   

7.
Pollen limitation and resource limitation were invoked to account for the pattern that flowering plants produce more flowers and ovules than fruits and seeds. This study aimed to determine their relative importance in Veratrum nigrum, a self-compatible, perennial, andromonoecious herb. In order to determine whether female production was limited by pollen grains on stigmas or by available resources, we performed supplemental hand pollination in three populations, male-flower-bud removal in three other populations, and emasculation of hermaphroditic flowers in still another population, resulting in a total of seven populations experimentally manipulated. Across the three populations, supplemental hand pollination did not significantly increase fruit set, seed number per fruit, and total seed production per individual, nor did emasculation of hermaphroditic flowers. Taken together, our results suggest that pollen grains deposited on stigmas were abundant enough to fertilize all the ovules. Male-flower-bud removal significantly increased the mean size of hermaphroditic flowers in all three populations. Female reproductive success was increased in one population, but not in the other two populations possibly due to heavy flower/seed predation. We concluded that the female reproductive success of V. nigrum was not limited by pollen grains but by available resources, which is consistent with Bateman's principle. Furthermore, the female reproduction increase of male-flower-bud removal individuals might suggest a trade-off between male and female sexual functions.  相似文献   

8.
Year-to-year variation in phenotypic gender in the monoecious cucurbit, Apodanthera undulata Gray was investigated. Small plants produce no flowers. Larger plants produce only staminate flowers (“male” plants), while a somewhat greater threshold size is necessary for pistillate flower production (cosexual plants). Approximately 85% of the plants that bloomed did not change gender group between years. Two measures of phenotypic gender were used: prospective femaleness, a measure standardized to the population floral ratio, and morphological femaleness, an unstandardized measure. Femaleness of cosexes between years was positively correlated; r values were somewhat greater when using morphological femaleness values. Plants that opened only staminate flowers one year were likely to open only staminate flowers the next year. Similarly, cosexes were likely to be cosexes again the following year, with similar femaleness values. Beyond the threshold size for pistillate flower production, plant size was not correlated with femaleness. These patterns suggest that all plants are male until they reach a certain size and that plants in their cosexual phase may have an intrinsic femaleness tendency due to either genotype or microsite effects.  相似文献   

9.
Huang SQ  Tang LL  Sun JF  Lu Y 《The New phytologist》2006,171(2):417-424
Pollinator-mediated selection has been hypothesized as one cause of size dimorphism between female and male flowers. Flower number, ignored in studies of floral dimorphism, may interact with flower size to affect pollinator selectivity. In the present study, we explored pollinator response, and estimated pollen receipt and removal, in experimental populations of monoecious Sagittaria trifolia, in which plants were manipulated to display three, six, nine or 12 female or male flowers per plant. In this species, female flowers are smaller but have a more compressed flowering period than males, creating larger female floral displays. Overall, pollinators preferred to visit male rather than female displays of the same size. Both first visit per foraging bout and visitation rates to female displays increased with display size. However, large male displays did not show increased attractiveness to pollinators. A predicted relationship that pollen removal, rather than pollen receipt, is limited by pollinator visitation was confirmed in the experimental populations. The results suggest that the lack of selection on large male displays may affect the evolution of floral dimorphism in this species.  相似文献   

10.
Summary Individual plants in gynodioecious populations ofPhacelia linearis (Hydrophyllaceae) vary in flower gender, flower size, and flower number. This paper reports the effects of variation in floral display on the visitation behaviour of this species' pollinators (mainly pollen-collecting solitary bees) in several natural and three experimental plant populations, and discusses the results in terms of the consequences for plant fitness. The working hypotheses were: (1) that because female plants do not produce pollen, pollen-collecting insects would visit hermaphrodite plants at a higher rate than female plants and would visit more flowers per hermaphrodite than per female; and (2) that pollinator arrival rate would increase with flower size and flower number, the two main components of visual display. These hypotheses were generally supported, but the effects of floral display on pollinator visitation varied substantially among plant populations. Hermaphrodites received significantly higher rates of pollinator arrivals and significantly higher rates of visits to flowers than did females in all experimental populations. Flower size affected arrival rate and flower visit rate positively in natural populations and in two of the three experimental populations. The flower size effect was significant only among female plants in one experimental population, and only among hermaphrodites in another. The effect of flower number on arrival rate was positive and highly significant in natural populations and in all experimental populations. In two out of three experimental populations, insects visited significantly more flowers per hermaphrodite than per female and visited more flowers on many-flowered plants than on few-flowered plants, but neither effect was detected in the third experimental population. Because seed production is not pollen-limited in this species, variation in pollinator visitation behaviour should mainly affect the male reproductive success of hermaphrodite plants. These findings suggest that pollinator-mediated natural selection for floral display inP. linearis varies in space and time.  相似文献   

11.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

12.
Other than studies on sex-labile Arisaema species, studies of gender patterns in Araceae are scarce. The modification of phenotypic and functional gender was investigated in three populations of the monoecious Arum italicum Miller. The probability of reproduction and the number of inflorescences produced increased with plant size, and flower number (total, male, staminodes, female, pistillodes) increased with both plant and inflorescence sizes. However, plant and inflorescence sizes were poor predictors of floral sex ratio (female to male flower ratio). In contrast, change in floral sex ratio towards increasing femaleness was found among inflorescences sequentially produced by a plant. This change could not be explained by either a decrease in inflorescence size or a change in the mating environment. Differences in functional gender did not appear to be related to plant size or stage in the flowering period. Instead, different patterns of functional gender were found between plants with different number of inflorescences. Multi-inflorescence plants showed a functional gender around 0.5, while plants with one inflorescence showed a more extreme functional gender (either male, female, or functionally sterile). Sex of flowers in this species did not seem to exhibit a phenotypic trade-off.  相似文献   

13.
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the “pollen-donation hypothesis” have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success.  相似文献   

14.
Summary The response by male and female plants to herbivory was studied by experimental defoliation of the dioecious perennial herb Silene dioica in a green-house. Male and female plants were defoliated prior to and during the early flowering phase at two intensities (50% and 100% of leaf-area removed) in two consecutive years. Defoliation resulted in a decrease in the number of flowers initiated in both sexes, while a larger delay of peak flowering and a higher mortality was observed in males compared to females. In female plants, severe defoliation resulted in a reduction in seed number per capsule and in seed size compared to control. Females showed a negative correlation between the production of flowers in the first and second season in all treatments, while flowering in males the first season was not correlated with flowering in the second season. Females also showed a lower frequency of flowering than males during the two seasons studied. However, during the flowering period, males allocated significantly more biomass to flowers than did females. This outcome supports the idea that females may have a higher total reproductive expenditure than males, but males have a higher reproductive effort during flowering. Male rosette leaves were significantly preferred by the generalist herbivore Arianta arbustorum in experiments. This preference was most pronounced in trials with leaves from fertilized plants compared to nonfertilized plants. A greater storage of resources in aboveground leaves during winter by males compared to females may explain the higher preference for male leaves and the higher male mortality following early defoliation. Furthermore, males are smaller than females and may have a lower ability than females to replace lost resources needed for reproduction when defoliated early in the season.  相似文献   

15.
Variation in sex expression, flowering pattern, and seed production was studied in the self-compatible perennial herb Geranium maculatum in Illinois and Indiana. In a survey of eight populations, female (male-sterile) plants were found in seven (frequencies ranging from 0.5% to 24.3% [median 4.2%]), and intermediate plants (with partly reduced male function) were found in all populations. Gender variation and sexual differences in reproductive characters were studied in detail in two populations. One population consisted of 5% female, 27% intermediate, and 68% hermaphrodite plants; the other consisted of 1% female, 20% intermediate, and 79% hermaphrodite plants. Females produced smaller flowers and began flowering earlier than hermaphrodites. Intermediates produced flowers of an intermediate size and began flowering as early as females. Females and hermaphrodites did not differ in flower number, vegetative size, flowering frequency, survival, or seed size. However, females produced 1.6 times more seeds than hermaphrodites. Intermediates produced 1.3–1.6 times more seeds than hermaphrodites. Some between-year variation in sex expression was observed. Hand-pollination with outcross pollen produced two to four times as many seeds as hand-pollination with self-pollen. A lower outcrossing rate in hermaphrodites than in females may at least partly explain the lower seed set in hermaphrodites. The higher seed production of females, and possibly the high fecundity of the intermediates, should contribute to the maintenance of this sexual polymorphism.  相似文献   

16.
Floral gender in angiosperms often varies within and among populations. We conducted a field survey to test how predispersal seed predation affects sex allocation in an andromonoecious alpine herb Peucedanum multivittatum. We compared plant size, male and perfect flower production, fruit set, and seed predation rate over three years among nine populations inhabiting diverse snowmelt conditions in alpine meadows. Flowering period of individual populations varied from mid‐July to late August reflecting the snowmelt time. Although perfect flower and fruit productions increased with plant size, size dependency of male flower production was less clear. The number of male flowers was larger in the early‐flowering populations, while the number of perfect flowers increased in the late‐flowering populations. Thus, male‐biased sex allocation was common in the early‐flowering populations. Fruit‐set rates varied among populations and between years, irrespective of flowering period. Fruit‐set success of individual plants increased with perfect flower number, but independent of male flower number. Seed predation by lepidopteran larvae was intense in the early‐flowering populations, whereas predation damage was absent in the late‐flowering populations, reflecting the extent of phenological matching between flowering time of host plants and oviposition period of predator moths. Seed predation rate was independent of male and perfect flower numbers of individual plants. Thus, seed predation is a stochastic event in each population. There was a clear correlation between the proportion of male flowers and the intensity of seed predation among populations. These results suggest that male‐biased sex allocation could be a strategy to reduce seed predation damage but maintain the effort as a pollen donor under intensive seed predation.  相似文献   

17.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

18.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

19.
Flowering and fruiting phenologies of individual plants and flowers of Lobelia inflata, a North American summer annual, were studied in the field and greenhouse to determine whether onset of flowering and fruit maturation were correlated, and the degree to which these reproductive phenologies were influenced by the environment. Within each of two field populations, larger plants flowered earlier and produced more flowers than smaller plants. Onset of flowering was positively correlated with onset of fruit maturation but not perfectly so. Two factors decreased the intensity of this correlation. First, at the flower level, the earlier a flower bloomed, the longer the resulting fruit took to develop. Second, fruit development times varied significantly among individual plants. In the greenhouse, individuals watered more frequently attained greater size and flowered earlier than individuals watered less frequently. Nutrient additions did not affect plant size or onset of flowering. These results indicate that for the summer annual Lobelia inflata, reproductive phenologies are phenotypically correlated, and that timing of reproduction is resource and size dependent, as it is for other monocarpic plant species.  相似文献   

20.
Variation in floral sex allocation in Polygonatum odoratum (Liliaceae)   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: It is well known that resource allocation to male and female functions can be highly variable in hermaphroditic plants. The purpose of this study was to investigate variations in sexual investment at different levels (flower, plant and population) in Polygonatum odoratum, a plant with sequentially opening flowers. METHODS: Pollen and ovule production in base, middle and top flowers of P. odoratum flowering shoots from two natural populations were quantified. Plant measurements of phenotypic and functional gender were calculated in both populations. Total leaf number was used to investigate the relationship between gender assessments and plant size. KEY RESULTS: Pollen and ovule production varied depending on flower position, although the precise pattern differed between both studied populations; only investment in female floral function decreased markedly from base to top flowers in both populations. The frequency distribution of phenotypic gender and their relationship with plant size differed between populations. Phenotypic and functional gender were correlated in both populations. CONCLUSIONS: Sexual investment in P. odoratum has shown a marked variability within plants, among plants, and between populations, which confirms the importance of analysing sex expression in plants of this type. Differences in relative investment in male and female components (phenotypic gender) are reflected in the functional gender and it would be expected that the evolution of sexual specialization in Polygonatum odoratum would be promoted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号