首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive marine green macroalga Codium fragile ssp. tomentosoides is now considered to be an introduced marine pest along the northwest Atlantic and southern Australian coasts. International or domestic translocation of C. fragile ssp. tomentosoides is usually attributed to the fouling of ship hulls or shellfish, particularly oysters. A likely domestic vector is shipboard transport, involving the translocation of whole thalli or fragments entangled in fishing nets, ropes, etc. that are then released in a previously unaffected area. Here we investigated the survival of C. fragile ssp. tomentosoides under emersed conditions, simulating shipboard transport. C. fragile ssp. tomentosoides was able to survive periods of emersion of up to 90 days in high relative air humidity. Net photosynthesis remained positive at about 50% of the rates of submersed control thalli. After 2 days of emersion and 4 days of rehydration under submersed conditions thalli recover to their initial net photosynthesis rates. Hence, C. fragile ssp. tomentosoides is likely to survive long shipboard journeys entrapped in fishing nets, anchor wells or other protected, high-humidity areas of a vessel. Furthermore, C. fragile ssp. tomentosoides may survive emersion on an exposed deck during short trips, especially in cooler conditions such as at night. The incursion sites of C. fragile ssp. tomentosoides in Australia are generally in modified environments, often associated with shipping-related infrastructure such as wharves, jetties, rip rap, and moorings.  相似文献   

2.
The green algaCodium fragile ssp.tomentosoides (Chlorophyta) has been introduced accidentally and successfully from Japan to many shores of the northern and southern hemispheres, including those of the Northeast and Northwest Atlantic Ocean. On most European coasts,Codium occurs regularly but at low abundances in the intertidal zone and is absent from subtidal habitats. In contrast,Codium is extremely abundant in subtidal kelp beds in the Northwest Atlantic Ocean where it often reaches nuisance proportions. This differential success cannot be accounted for by either the properties of the invader or by physico-chemical differences between invaded coasts. A theoretical comparison between two regions on opposite sides of the Atlantic Ocean, i.e. Eastern Nova Scotia, Canada, and south central Britain, illustrates how the resident benthic community may determine the difference in relative abundance ofCodium in subtidal habitats between northeast America and Europe. In this review, low floral species diversity, biological disturbance and facilitation by a previous species invasion are suggested as potential factors for the establishment, success and abundance ofCodium in the Northwest Atlantic Ocean, but these require testing in field experiments.  相似文献   

3.
Coleman  Annette W. 《Hydrobiologia》1996,321(1):29-34
Analysis of DNA can help to distinguish those morphological characters indicative of species difference from those representing retained traits or parallel evolution. This can be of great value in detecting recent invaders. The choice of which DNA characters to examine not only dictates the methodology to be used but must also be appropriate for the detection level sought. Restriction endonuclease fragment comparisons of plastid DNA have been used to assess Codium species; the results show C. fragile subsp. tomentosoides from east and west coast North America to be identical while sympatric endemic Codium species each display their own unique set of fragments. For species of other algae, plastid DNA fragment patterns are not necessarily identical across a morphological species, e.g. Pandorina morum. Such repetitive element probes as M13 and the use of RAPDs are more appropriate for analysis of populations within species. DNA base sequence comparisons of nuclear rDNA genes often yield too few variant bases between closely related species for reliable identifications. Analysis of the more variable Internal Transcribed Spacer (ITS) region, lying between the small and large ribosomal subunit genes in nuclear DNA, yields more extensive base pair variation between species and relatively little within species; it may be an alternative choice for endonuclease restriction fragment analysis or for sequencing.  相似文献   

4.
The invasive canopy alga, Codium fragile ssp. tomentosoides, first observed at the Isles of Shoals in 1983, has become the dominant canopy species to 8 m throughout the islands. Codium populations are replacing themselves at most sites in what appears to be a new, climax, canopy species. However, Codium densities have declined in protected Gosport Harbor areas where it first became established. Codium has only slowly expanded its presence in adjacent nearshore subtidal habitats. Recent studies suggest a combination of factors that may be influencing the relative success of populations between habitats. The herbivorous sea slug, Placida dendritica, may be reducing populations in protected areas in spite of predators such as the green crab, Carcinus maenas, while surge may inhibit herbivore buildup in exposed habitats. Temperature instability due to localized, wind-driven upwelling may be slowing the buildup of subtidal Codium populations in nearshore sites. The combination of Codium dominance and the acquisition of increasing epibiont diversity are producing a new, potentially more complex community state than the previous kelp-dominated climax typical of the Gulf of Maine.  相似文献   

5.
A rhizomatous growth form of Codium fragile is described for the first time. Plants were collected in the Gulf of St. Lawrence in estuaries dominated by Zostera marina. Rhizomatous plants developed from propagules of whole plants that settled horizontally. Horizontal axes of C. fragile were up to 1 m long in plants collected in situ. Plants developed several to dozens of erect axes at right angle to the base. Horizontal growth of up to 0.2 m was found in field experiments where fragments were tied to plastic mesh and left in situ for 4 months. The unconsolidated filaments at the base of C. fragile often wrapped around the rhizomes of Z. marina and up to five separate attachment sites to eelgrass were found in single plants of C. fragile. In four estuaries, 57–100% of Codium plants with identifiable substratum were attached to shoots and rhizomes of Z. marina. The rhizomatous growth form was found in plants identified as C. fragile ssp. tomentosoides (Nova Scotia and Prince Edward Island) and C. fragile ssp. atlanticum (Prince Edward Island), suggesting that this is a phenotypic response to growth in soft bottom environments.Communicated by K Lüning  相似文献   

6.
Light absorption by two green seaweeds with similar photophysiology but different anatomies are compared: i) Ulva lactuca var. rigida (C. Ag.) Le Jolis, an optically translucent species of two cell layers both bearing chloroplasts; and, ii) Codium fragile subsp. tomentosoides (van Goor) Silva, an optically opaque species with a colorlelss medulla surrounded by a cortex of choloroplast-bearing utriclels. Thallus absorptance (fraction of incident light absorbed) was measured for various pigment contents. Absorptance by U. lactuca was dependent on pigment concentration in an exponential manner and never exceeded 0.6, whereas absorptance by C. fragile was independent of pigment concentration and always approached a balue of 1.0. Water in the medullary tissue of C. fragile is often of the utricles. The utricles appear to be “integrating spheres” enhancing the capture of incident light, aided by the wave-guide function of the thin peripheral layer of cytoplasm and a reflector function at their base. Photosynthitic performance for U. lactuca saturates at high light intensities and attenuates rapidly with decreasing intensities. In contrast, photosynthetic performance for C. fragile saturates at low light intensities and attenuates slowly with diminishing radiation. Extrapolated diel variation in photosynthesis shows that U. lactuca's anatomy is adaptive for high light intensity environments, whereas C. fragile's anatomy is adaptive for low light intensity environments. Both seaweeds fit into the ecological category of “fugitive” species, and compete in the Long Island Sound (Atlantic Ocean) rocky intertidal for free-space. Predictions are presented for relative species abundances along a monotonic gradient of light intensity.  相似文献   

7.
The introduction of non-native species occurs within a context of other anthropogenic impacts: thus a holistic approach is needed to understand interactive effects. Installation of shoreline protection structures is increasing in response to rising sea levels and increasing frequency of intense storms. Shoreline hardening structures can facilitate establishment of non-native species with multiple potential consequences. We measured abundances of both native and non-native Codium, a green macroalga, on natural hard substrates (oyster reefs) and artificial substrates (bulkheads and revetments) in two estuaries and assessed the effects of each Codium species on nitrogen fixation and net N2 fluxes. Native C. decorticatum was the most abundant (86 %) Codium on oyster reefs, while exotic C. fragile dominated (99 %) artificial substrates. N2 production via denitrification was greater than nitrogen fixation for both species and the net N2 production associated with non-native C. fragile was greater than with native C. decorticatum. Comparing our results with surveys conducted in the 1940s before C. fragile had invaded, indicates that non-native Codium has outcompeted native Codium on artificial substrates, but that natural substrate provided by oyster reefs remains a refuge for native Codium. Although shoreline hardening with artificial structures can reduce ecosystem services provided by coastal marsh and other habitats, an unexpected beneficial consequence was the N2 production associated with the non-native Codium, which has the potential to mitigate anthropogenic nutrient loading. Our results illustrate that the interaction between multiple anthropogenic impacts can be positive, and indicate that non-ephemeral macroalgae could be an overlooked component in nitrogen removal from marine ecosystems by enhancing denitrification.  相似文献   

8.
Several subspecies are defined within Codium fragile, including the invasive C. fragile ssp. fragile, first reported in New Zealand in 1973. An endemic subspecies, C. fragile ssp. novae‐zelandiae, is also found throughout New Zealand. The two subspecies exhibit morphological and molecular variation, although these have never been evaluated together. We compared variation between subspecies at locations in Auckland, identifying subspecies using rps3‐rpl16 DNA sequence data, and assessing gross morphological differences, anatomical utricle characters and morphometrics. The taxonomic utility of the morphometric data sets was assessed by linear discriminant analysis. Utricle characters and measurements varied within individual thalli and between different preservation methods. The phenotypes of both subspecies were highly variable and influenced by environment. Accurate subspecies delimitation using morphological data was not possible; the discriminant analyses performed no better than chance for all combinations of the morphological data. Specimens from New Zealand, Canada, Australia and Ireland were sequenced using both the rps3‐rpl16 and tufA plastid markers. The tufA elongation factor was shown to be a good candidate for differentiating subspecies of C. fragile. This marker is twice the length of the rps3‐rpl16 spacer, shows greater variation between ssp. fragile and novae‐zelandiae, and is less prone to sequencing error. A simple restriction enzyme digest of the tufA amplicon can distinguish ssp. fragile and ssp. novae‐zelandiae. Our study expands the known range of the ssp. fragile in New Zealand, including the first record of this subspecies from the west coast of Auckland, and points to a need to re‐evaluate morphological and molecular criteria for subspecies currently defined within C. fragile.  相似文献   

9.
Drouin A  McKindsey CW  Johnson LE 《Oecologia》2012,168(2):491-502
Biological invasions can vary in the extent of their effects on indigenous communities but predicting impacts for particular systems remains difficult. In coastal marine ecosystems, the green seaweed Codium fragile ssp. fragile is a notorious invader with its reputation based on studies conducted largely on rocky shores. The green seaweed has recently invaded soft-bottom eelgrass communities by attaching epiphytically to eelgrass (Zostera marina) rhizomes, thereby creating the potential for disruption of these coastal habitats through competition or disturbance. We investigated the effect of this invader on various aspects of eelgrass performance (shoot density and length, shoot growth, above- and below-ground biomass, carbohydrate storage) using both small-scale manipulative and large-scale observational experiments. Manipulative experiments that varied Codium abundance demonstrated clear negative effects over a 4-month period on shoot density and carbohydrate reserves, but only for high, but realistic, Codium biomass levels. Light levels were much lower under canopies for high and medium density Codium treatments relative to low and control Codium cover treatments, suggesting that shading may influence eelgrass growing under the algal cover. In contrast, these effects were either not detectable or very weak when examined correlatively with field surveys conducted at larger spatial scales, even for sites that had been invaded for over 4 years. It is premature to extend generalizations of Codium’s impact derived from studies in other systems to eelgrass communities; further efforts are required to assess the long-term threats that the alga poses to this ecosystem. This study demonstrates the need to investigate impacts of invasions over multiple scales, especially those that incorporate the temporal and spatial heterogeneity of the invader’s abundance.  相似文献   

10.
Pacific herring (Clupea pallasii) is divided into three subspecies: two in northeast Europe and one in the north Pacific Ocean. Genetic studies have indicated that the populations in northeast Europe have derived from the northwest Pacific herring recently, or during the last 10–15 kyr, and that they are distinct from the population in the northeast Pacific. In addition, hybridization between the Pacific herring and the Atlantic herring has been documented. Otolith variation has been considered to be largely affected by environmental variation, but here we evaluate whether the genetic differentiation is reflected in otolith shape differences. A clear difference in otolith shape was observed between the genetically differentiated herring species Clupea harengus from the Atlantic and C. pallasii. The otolith shape of C. p. suworowi in the Barents Sea was different from the shape of C. pallasii in northern Norway and C. p. pallasii from the Pacific. Populations of C. p. pallasii, sampled east and west of the Alaska Peninsula, which belong to two genetically different clades of the C. p. pallasii in the Pacific Ocean, show a clear difference in otolith shape. C. p. suworowi and the local C. pallasii peripheral population in Balsfjord in northern Norway are more similar to the northwest Pacific herring (C. p. pallasii) than to the northeast Pacific herring (C. p. pallasii), both genetically and in otolith shape. The Balsfjord population, known to be influenced by introgression of mtDNA from the Atlantic herring, does not show any sign of admixture in otolith shape between the two species. A revised classification, considering the observed genetic and morphological evidence, should rather group the northwest Pacific herring in the Bering Sea together with the European populations of C. pallasii than with the northeast Pacific herring in the Gulf of Alaska.  相似文献   

11.
Cell walls in the coenocytic green seaweed Codium vermilara (Olivi) Chiaje (Bryopsidales, Chlorophyta) are composed of ~32% (w/w) β‐(1→4)‐d‐mannans, ~12% sulfated polysaccharides (SPs), and small amounts of hydroxyproline‐rich glycoprotein‐like (HRGP‐L) compounds of the arabinogalactan proteins (AGPs) and arabinosides (extensins). Similar quantities of mannans and SPs were reported previously in the related seaweed C. fragile (Suringar) Hariot. Overall, both seaweed cell walls comprise ~40%–44% of their dry weights. Within the SP group, a variety of polysaccharide structures from pyruvylated arabinogalactan sulfate and pyruvylated galactan sulfate to pyranosic arabinan sulfate are present in Codium cell walls. In this paper, the in situ distribution of the main cell‐wall polymers in the green seaweed C. vermilara was studied, comparing their arrangements with those observed in cell walls from C. fragile. The utricle cell wall in C. vermilara showed by TEM a sandwich structure of two fibrillar‐like layers of similar width delimiting a middle amorphous‐like zone. By immuno‐ and chemical imaging, the in situ distribution of β‐(1→4)‐d‐mannans and HRGP‐like epitopes was shown to consist of two distinct cell‐wall layers, whereas SPs are distributed in the middle area of the wall. The overall cell‐wall polymer arrangement of the SPs, HRGP‐like epitopes, and mannans in the utricles of C. vermilara is different from the ubiquitous green algae C. fragile, in spite of both being phylogenetically very close. In addition, a preliminary cell‐wall model of the utricle moiety is proposed for both seaweeds, C. fragile and C. vermilara.  相似文献   

12.
Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo‐Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.  相似文献   

13.
The marine benthic algal flora of Clare Island, off County Mayo, western shore of Ireland, was investigated; collections of intertidal and subtidal marine algae were made at 16 sites along the eastern and southern shores in the years 1990, 1993 and 2000–2002. The data and observations obtained were compared with the results of a similar survey conducted by Arthur Disbrowe Cotton in 1910–1911. Considering the results of the original survey and the new survey together, the marine algal flora of the island currently totals 293 species; 224 species were recorded by Cotton in the original survey, whereas 223 species were identified in the present study. Most species are common to the original and the new list and the main differences are easily explainable; the new survey used SCUBA diving, which allowed the collection of several subtidal species not collected in 1910, and Cotton reported several microscopic green and brown algae, usually difficult to recognise in the field, which were not rediscovered. The most remarkable differences consist in the current presence of some large intertidal brown algae (Bifurcaria bifurcata, Cystoseira foeniculacea and Cystoseira nodicaulis) that were not reported in the survey of 1910. Two algae, Codium fragile subsp. tomentosoides and Asparagopsis armata, were introduced in Europe after the original survey. At present, the benthic algal assemblages of Clare Island still have basically the same structure and distribution as in 1910 and, if compared with other coastal areas of Europe, the intertidal marine environment of Clare Island appears remarkably well conserved.  相似文献   

14.
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold‐temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm‐temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4–8° C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field‐collected gametophytes.  相似文献   

15.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

16.
The relationship of phenotypic morphological and behaviouralvariation was investigated for the ascoglossan (=sacoglossan)opisthobranch Placida dendritica. Morphological attributes weredocumented for individual slugs collected from three algal hostspecies along the central Oregon coast, USA, the green algaeCodium setchellii, C. fragile, and Bryopsis corticulans. Becauseindividuals on B. corticulans generally were substantially largerthan conspecifics on Codium spp., the species appeared polymorphic.Comparably sized slugs from different host genera also differedsignificantly in morphology: individuals from Codium spp. hadmore numerous, shorter cerata on wider bodies than did conspecificsfrom B. corticulans. Principal components analysis indicatedthat despite considerable overlap of morphological characters,ceratal shape features were diagnostic of algal host. When slugscollected from C. fragile were maintained on C. fragile andB. corticulans for 4 days in the laboratory, the size and shapeof slugs fed different diets diverged, and changes were consistentwith field data. Thus, phenotype was labile and changed as aresult of modified diet. Although a variety of molluscs exhibitdietary induction of morphology, a general awareness of thephenomenon has only recently begun to emerge, despite its importantecological and taxonomic implications. (Received 5 February 1996; accepted 2 July 1996)  相似文献   

17.
Growth of Codium fragile subsp. tomentosoides (van Goor) Silva in culture depends upon the season of seawater collection. One factor responsible for this variation in growth may be indole-3-acetic acid (IAA). When 10?9 to 10?4 M IAA is added to cultures of Codium fragile, optimum growth is at 10?6 M. The response to exogenous IAA depends upon the time of year when the sea-water is collected. The growth in a range of known IAA concentrations allows the prediction of a seasonal cycle of IAA, or its physiological equivalent, in Rhode Island coastal waters. Such a compound may be an important ecological factor for some algal species.  相似文献   

18.
We examined the effects of native kelps, Laminaria longicruris de la Pylaie and L. digitata (Hudson) Lamouroux, and of the invasive alga, Codium fragile ssp. tomentosoides (Van Goor) Silva, on the composition and abundance of mobile benthic macrofauna and of turf algae by measuring the response of these assemblages to experimental removal of the respective macroalgal canopy. From June 2003 to November 2004, we censused macrofauna and measured canopy cover within 4 × 10 m strips of alternating Canopy Intact (control) and Canopy Removed treatments in both a Codium- and a Laminaria-dominated habitat in the rocky subtidal zone of a semi-protected embayment on the Atlantic coast of Nova Scotia, Canada. Macroalgal canopy cover fluctuated seasonally, peaking in September/October (69% cover in 2003; 55% cover in 2004) for Codium and in May 2004 (70% cover) for kelps, and with both canopy types reaching a winter minimum in January 2004 (22 and 28% cover, respectively). In both Codium and Laminaria habitats, significant effects of canopy removal on the overall macrofaunal assemblage were evident only during periods in which canopy cover in the Canopy Intact treatment was ≥ 50%. In the Codium habitat, 4 out of 11 characteristic taxa were more abundant in the Canopy Intact treatment, where taxonomic diversity also was higher. In contrast, 4 out of 11 characteristic taxa in the Laminaria habitat were more abundant in the Canopy Removed treatment and diversity was similar between treatments. Turf algae were sampled in November 2004 and, despite between-treatment differences in the light regime, there was no significant effect of canopy removal. Our results indicate that selection of algal habitats by mobile macrofauna is likely determined by the different shelter and foraging opportunities offered by these morphologically dissimilar ecosystem engineers.  相似文献   

19.
We examined the potential of herbivory by the common periwinkle Littorina littorea to limit recruitment and vegetative re-growth of the invasive green alga Codium fragile ssp. tomentosoides in a series of manipulative field experiments in tidepools on a wave-exposed rocky shore in Nova Scotia, Canada. Snails were excluded or included from circular plots (14 to 20 cm diameter) with cages to compare growth and survival of C. fragile against procedural (partial cages) or natural (uncaged) control plots. Our results show that L. littorea may restrict growth and survival of C. fragile by grazing new recruits (< 2 cm thallus length), fronds of adult thalli that are bleached and necrotic, and residual holdfasts (< 2 mm thickness) of detached thalli (artificially severed to mimic wave dislodgement). Once recruits grow beyond a critical size (~ 3 cm), or damaged tissues or holdfasts regenerate, grazing of C. fragile by L. littorea appears to be limited and ineffectual. Our experimental results corroborate correlative evidence from previous studies that herbivory by L. littorea limits the abundance of C. fragile in tidepools on the Atlantic coast of Nova Scotia, particularly pools in the high intertidal zone where these snails are abundant. Lower on the shore, littorinid grazing and physical stressors that render algae more vulnerable to grazers (e.g. UV radiation and freezing) are less intensive, and probably have less of a regulatory effect on populations of C. fragile.  相似文献   

20.
Grateloupia filicina (C. Agardh) Lamouroux, originally described from the Mediterranean Sea, has long been considered a textbook example of a marine red alga with a cosmopolitan distribution. An rbcL‐based molecular phylogeny, encompassing samples covering the entire geographic distribution of the species, revealed a plethora of “cryptic” species, whereby the presence of genuine G. filicina is limited to the Mediterranean basin. The phylogeny revealed a strong biogeographic imprint, with specimens from temperate regions resolved in clades composed of species inhabiting the same geographic region. Presence of widely divergent morphologies in the temperate clades indicated that several lineages have converged independently to a G. filicina‐type morphology. Tropical representatives are resolved in a single clade with very uniform G. filicina‐type morphology and pairwise sequence divergences that are lower than the average divergence observed in temperate lineages. This, combined with a lack of clear geographic structure among the tropical lineages, may indicate a more recent divergence with long‐range dispersal capacities. Violations to the biogeographic signal in temperate lineages seemed to be due to either inadequate taxonomy or recent introductions. Grateloupia minima P. & H. Crouan, a taxon placed in synonymy under G. filicina, is reinstated as a separate species distributed in the northeast Atlantic Ocean. Grateloupia capensis sp. nov. is described to accommodate specimens from South Africa with a G. filicina‐type morphology, and G. filicina var. luxurians is elevated to species status. Morphological and anatomical characters were put forward that support the distinctiveness of these three distinct species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号