首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juncus kraussii Hochst., an important saltmarsh macrophyte, is intensively harvested for many commercially orientated products and current populations are under threat of overexploitation. In saline, intertidal mud banks, this species occurs on higher ground, suggesting that it is adapted to lower salinities and less frequent inundation. The objectives of this study were to determine biomass accumulation, as well as morphological and physiological adaptations of J. kraussii to salinity and waterlogging stresses. Plants collected from the field were subjected to 0.2, 10, 30, 50 and 70% seawater under drained or flooded conditions for three months. Measurements were made of biomass accumulation, CO2 exchange, chlorophyll fluorescence, ion and water relations. Furthermore, seed germination responses to a range of salinities were investigated. Total dry biomass accumulation, as well as the number and height of culms, decreased with increase in salinity under both flooded and drained conditions. Generally, CO2 exchange, stomatal conductance, Photosystem II (PSII) quantum yield and electron transport rate (ETR) through PSII declined with increase in salinity in both the flooded and drained treatments. Predawn and midday ψ in culms decreased with increase in salinity, being lower under drained than flooded conditions. Inorganic solute concentrations in culms increased with increase in salinity, with Na+ and Cl being the predominant ions. Na+/K+ ratios in culms increased significantly with increase in salinity. Proline concentrations in roots and culms, which increased with salinity, were considerably higher under drained than flooded conditions. Germination was best at salinities less than 20% seawater and decreased significantly with further increase in salinity to 110% seawater. Transfer of ungerminated salt-treated seeds to distilled water stimulated germination. This study has demonstrated that J. kraussii is a highly salt and flood tolerant species, being able to grow and survive in salinities up to 70% seawater, under both drained and flooded conditions. Maximal growth occurred at low salinities (<10% seawater) under flooded condition.  相似文献   

2.
G. Naidoo  S. G. Mundree 《Oecologia》1993,93(3):360-366
The effects of waterlogging and salinity on morphological and physiological responses in the marsh grass Sporobolus virginicus (L.) Kunth were investigated in a 4×2 factorial experiment. Plants were subjected to four salinity levels (0, 100, 200 and 400 mol m–3 NaCl) and two soil inundation conditions (drained and flooded) for 42 days. Flooding at 0 mol m–3 NaCl caused initiation of adventitious surface roots, increased internal acration and plant height, induced alcohol dehydrogenase activity (ADH), and decreased belowground biomass and the number of culms per plant. Salinity increase from 0 to 400 mol m–3 NaCl under drained conditions increased leaf and root proline concentrations and decreased photosynthesis, aboveground biomass, number of culms per plant and number of internodes per culm. Concurrent waterlogging and salinity induced ADH activity and adventitious surface roots but decreased plant height and aboveground biomass. Internal air space increased with waterlogging from 0 to 100 mol m–3 NaCl but further increases in salinity to 400 mol m–3 reduced air space. Combined waterlogging and salinity stresses, however, had no effect on photosynthesis or on the concentrations of proline in leaves or roots. These results are discussed in relation to the widespread colonization by S. virginicus of a wide range of coastal environments varying in soil salinity and in the frequency and intensity of waterlogging.  相似文献   

3.
Edaphic diatoms inhabiting the sediments beneath dwarf Spartina alterniflora Loisel. and S. patens (Ait.) Muhl. in Great Bay salt marsh, Tuckerton, New Jersey were collected from 24 September 1974 through 20 August 1975. Of the 91 taxa encountered, 8 were endemic to the dwarf S. alterniflora habitat and 42 endemic to the S. patens habitat. The edaphic diatom community associated with S. patens was comprised of a much greater number of taxa and possessed higher values for species diversity (H') and evenness (J') than the community associated with dwarf S. alterniflora. The salinity of the marsh surface showed a completely opposite trend, being greatly reduced at the S. patens habitat. A highly significant relationship (P < 0.001) between the number of diatom taxa and marsh surface salinity at the S. patens habitat was demonstrated by a least squares regression. This finding led to the conclusion that the dissimilarity in the structure of the two edaphic diatom communities was primarily due to the very low marsh surface salinities at the S. patens habitat from January through June, and that this sustained. low-salinity regime allowed a very large number of taxa to coexist only in the S. patens community. Comparison of the diatom flora of Great Bay salt marsh with that of a Delaware marsh studied previously by the author showed that 67.0% of the 91 taxa encountered in New Jersey also occur on the Delaware marsh.  相似文献   

4.
Waterlogging responses of an emergent freshwater macrophyte, Schoenoplectus scirpoides, were investigated by carrying out laboratory and field experiments. Soil cores containing uniform plants of S. scirpoides were subjected to drained, 1/3 flooded, alternately flooded and drained at weekly intervals, and continuously flooded treatments for 6 months. Mean soil redox potential of the drained soil was 225 ± 29 mV and was significantly lower in the other treatments. Total dry biomass, above‐ground biomass and number of culms in the flooded/drained and flooded treatments were significantly higher than those in the drained and 1/3 flooded treatments. Below‐ground/above‐ground biomass ratios were highest in the drained treatment and significantly lower in the waterlogged treatments. Plant height and the growth rate of culms were least in the drained treatment and significantly higher in the other treatments. Culm specific gravity decreased significantly with increase in soil moisture. In the field study, soil redox potentials were moderately reduced in the inland and streamside sites, while culm elongation rate was significantly higher by 94% in the streamside compared with the inland site. Optimum growth occurred under flooded conditions, suggesting that the species could flourish with increasing water intrusion in estuarine areas, as predicted by global climate change.  相似文献   

5.
A common but often less tested explanation for the successful invasion of alien species is that invasive alien species outcompete their co-occurring natives, which may not always be the case. In this study, we established artificial environmental gradients in a series of pot experiments with controlled environments to investigate the effects of salinity, sediment type and waterlogging on the performance of and interactions between Phragmites australis (native) and Spartina alterniflora (alien), which generally co-exist in the saline intertidal zones of Chinese and American coasts. Significant effects of salinity and waterlogging were detected on biomass production and morphological characteristics of S. alterniflora and P. australis, and the competitive interactions between the two species were found to vary with all three environmental factors in our experiments. Relative Neighbor Effect (RNE) analyses indicate that competitive dominance of S. alterniflora occurred under the conditions of high salinity, sandy sediment and full immersion, whereas P. australis showed competitive dominance under the conditions of low salinity and non-immersion. Our results suggest that S. alterniflora might outcompete P. australis under conditions present in early salt marsh succession, which support the viewpoint that the outcomes of competition between co-occurring native and invasive alien plants depend on the growing conditions. The implication of this study is that in response to the environmental changes expected from seawater intrusion and sea-level rise, the range of S. alterniflora is expected to expand further in the Yangtze River estuary in the future.  相似文献   

6.
Greenhouse and field studies were conducted to evaluate the effect of crude oil on selected US Gulf of Mexico coastal marsh species. Species showed different levels of sensitivity to oiling between greenhouse and field conditions. In greenhouse studies, two crude oils were used: South Louisiana crude oil (SLC) and Arabian Medium crude oil (AMC). The majority of Spartina patens plants died within one month following oiling with little or no recovery after three months. Panicum hemitomon and Spartina alterniflora were also adversely affected by oiling under greenhouse conditions but to a lesser extent than S. patens. The SLC or AMC oiling led to biomass reductions in S. alterniflora and S. patens. The dry biomass was not affected by oiling in P. hemitomon, Sagittaria lancifolia, Typha latifolia, and Scirpus olneyi. Results showed that S. patens plants were more sensitive to SLC as compared to AMC oil. Gross CO2-C fixation data collected in the greenhouse indicated no differences in recovery among species across oiling treatments for S. lancifolia, S. olneyi, and T. latifolia. Field studies with S. alterniflora, S. patens and S. lancifolia demonstrated initial sensitivity of these species to oiling, and recovery following oiling with SLC. Our data also showed that caution must be employed whenever results from greenhouse studies are extrapolated to predict oil impact on vegetation under field conditions. Development of any sensitivity index of plant responses to oiling should not be based on greenhouse experiments only. Field evaluations should be included which best depict plant responses to oiling. Thus, restoration measures of US Gulf of Mexico coastal marshes following oiling should rely primarily on field studies. The field research suggests that the US Gulf of Mexico coastal marsh vegetation are likely to recover from oil spills naturally without the need for remediation procedures.  相似文献   

7.
Summary Plants of the salt marsh grass Spartina alterniflora Loisel were collected from North Carolina and grown under controlled nutrient, temperature, and photoperiod conditions. Plants were grown at two different illumination levels; substrate salinity was varied, and leaf photosynthesis, transpiration, total chlorophyll, leaf xylem pressure, and specific leaf weight were measured. Conditions were controlled so that gaseous and liquid phase resistances to CO2 diffusion could be calculated. Growth at low illumination and high salinity (30 ppt) resulted in a 50% reduction in photosynthesis. The reduction in photosynthesis of plants grown at low illumination was correlated with an increase in gaseous resistance. Photosynthetic rates of plants grown at high salinity and high illumination were reduced only slightly compared to rates of plants grown, in 10 ppt and Hoagland's solution. Both high salinity and high illumination were correlated with increases in specific leaf weight. Chlorophyll data indicate that specific leaf weight differences were the result of increases in leaf thickness. It is therefore hypothesized that photosynthetic response can be strongly influenced by salinity-induced changes in leaf structure. Similarities in photosynthetic rate on an area basis at high, illumination were apparently the result, of increases in leaf thickness at high salinity. Photosynthetic rates were generally quite high, even at salinities close to open ocean water, and it is concluded that salinity rarely limits photosynthesis in S. alterniflora.  相似文献   

8.
Jie Song 《Plant and Soil》2009,324(1-2):231-240
The effects of waterlogging and salinity on seedling emergence, seedling growth and ion accumulation in a euhalophyte Suaeda salsa in an intertidal zone and on saline inland soil were investigated. Seedlings of S. salsa from the intertidal zone emerged more rapidly than those of the inland population under both waterlogged and drained conditions. Waterlogging and salinity had no adverse effects on seedling emergence of S. salsa from the intertidal zone, but markedly inhibited this parameter in the inland population. Waterlogging did not affect the seedling survival, shoot dry mass, and shoot height in high salinity in S. salsa from the intertidal zone, while the opposite trend was shown in the inland population. The root dry mass was higher in S. salsa from the intertidal zone as compared to the inland population, in waterlogged treatments by 1.9, 1.3, and 1.5 times in 1, 200, and 600 mM NaCl, respectively, and in drained treatments by 1.8, 2.3, and 3.0 times in 1, 200, and 600 mM NaCl, respectively. Waterlogging increased Na+ and K+ concentrations in high salinity, but waterlogging had no effect on Cl- concentration in shoots of S. salsa from the intertidal zone. In all NaCl treatments, waterlogging had no effect on concentrations of these ions in shoots of S. salsa from the saline inland site. In a field investigation, the fresh mass of shoots and roots were lower, whereas the root/shoot ratio was 1.5 times higher in S. salsa from the intertidal zone, compared with the inland population. These findings indicate that S. salsa population from the intertidal zone is more waterlogging tolerant than the inland population. S. salsa from the intertidal zone produced relatively more root biomass and this might help anchor plants against tidal action in the intertidal zone. The physiological and morphological characteristics may determine the natural distributions of the two S. salsa populations in their different saline environments.  相似文献   

9.
The influence of soil waterlogging on the distribution and energy status of Salix nigra and S. exigua were studied in the field and laboratory. Differential flooding in natural stands of Salix spp. and under controlled conditions in the greenhouse demonstrated that S. nigra was more tolerant of waterlogged soil conditions than was S. exigua. Salix nigra exhibited a significantly higher leaf energy status and greater ability to oxidize waterlogged soil when flooded than did S. exigua. However, S. exigua appeared to be more tolerant of moisture stress than S. nigra as indicated by the significantly higher leaf resistances to water vapor exchange and higher leaf water potentials of S. exigua. These data support the theory that the reason S. nigra inhabits lower elevation sites than S. exigua in the Atchafalaya River Basin may be the differential tolerance of these two species to soil waterlogging on one extreme and moisture deficiencies on the other.  相似文献   

10.
Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood‐intolerant species such as Spartina patens to the flood‐tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora, small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens. These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species’ vulnerability to global change.  相似文献   

11.
Suaeda maritima is a halophytic plant and its habitat is salt marsh. In order to adapt to saline or waterlogged conditions, plants have evolved mechanisms that include antioxidant protection. However, the combined effect of salinity and waterlogging on antioxidants in S. maritima is unknown. The aim of this study was therefore to investigate the effect of saline-flooding on levels of glutathione and phenolic compounds (antioxidants) and the correlation between their concentration and activity in S. maritima shoots grown in their natural habitat and in a glasshouse.Shoots were collected from two different elevations (and so different degrees of flooding) of a salt marsh while other plants were grown in half strength seawater in the controlled conditions of a glasshouse for 8 weeks (drained and flooded). Shoot samples were used to measure dry weight, glutathione and its reduction state, malonyldialdehyde content (MDA), polyphenol content, superoxide anion and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging activity in the shoots of S. maritima.Growth of S. maritima was greater in plants growing on the high marsh than at a lower elevation and in drained medium as opposed to waterlogged conditions in the glasshouse. Waterlogging caused an increase in glutathione and its reduction state. The glutathione half-cell redox potential (EGSSG/2GSH) was more negative in plant shoots grown under waterlogged conditions than in plants grown under normal conditions. Higher DPPH and superoxide anion scavenging activity was associated with high antioxidant concentrations (glutathione and polyphenols).Conclusions. Under saline-flooded conditions in the field and in the glasshouse, plants produced a higher concentration of antioxidants than under drained conditions. These result indicated that antioxidant molecules play an important role in S. maritima plants under combined salinity and waterlogging stress.  相似文献   

12.
For most plants, elevated salinities can promote both hyperionic and hyperosmotic stress, often resulting in decreased growth and increased mortality. In previous studies involving plant–water relations, two contrasting physiological mechanisms to water stress have emerged: (i) stress-tolerance, which can be achieved through osmotic adjustment and changes in tissue elasticity, and (ii) stress-avoidance, which restricts further water loss through decreased stomatal conductance and changes in leaf morphology and/or orientation. While these processes have been well characterized in angiosperms during drought, few studies have considered these responses in halophytes during salt-stress. In this study, experimental microcosms were used to evaluate salt-tolerance and salt-avoidance in two contrasting coastal-marsh halophytes, Juncus roemerianus and Spartina alterniflora. In mature S. alterniflora, preacclimated to freshwater, only salt-tolerance mechanisms (osmotic adjustment and increased tissue rigidity) were observed during high salinity conditions. In contrast, physiological modifications observed in mature J. roemerianus involved salt-avoidance through decreased stomatal conductance. These physiological responses are consistent with zonation patterns in these plants, wherein S. alterniflora resides in the lower marsh and must contend with long-term salt exposure and J. roemerianus inhabits the upper reaches of salt-marshes where salinities tend to be lower and where salt-stress often involves transient exposure to high salinities.  相似文献   

13.
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 μmol(quantum) m−2 s−1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.  相似文献   

14.
G. Naidoo  S. Naidoo 《Oecologia》1992,90(3):445-450
Summary Flooding responses in Sporobolus virginicus (L.) Kunth., a perennial C4 grass, propagated from plants collected on the fringes of a mangrove swamp, were examined in a glasshouse study over 42 days. Flooding significantly reduced soil redox potential, induced adventitious root development, shifted resource allocation from below- to above-ground components without affecting total biomass accumulation and significantly decreased below-ground/above-ground biomass ratios. Although soil waterlogging significantly increased alcohol dehydrogenase activity (ADH) after 30 h, significant increase in central air space by 45–50% of the cross-sectional stem area eliminated root hypoxia, and ADH activity decreased to levels equivalent to drained controls after 42 days. In addition, flooded plants exhibited significantly higher carbon dioxide assimilation rates but similar relative growth rates (RGR) to drained controls. The results indicate that S. virginicus responds to water-logging by a combination of metabolic, morphological and anatomical mechanisms, which may account for its widespread distribution in coastal lagoons, estuaries and marshes.  相似文献   

15.
Gas exchange characteristics of three major Louisiana Mississippi River deltaic plain marsh species, Spartina patens (Ait.) Muhl., Spartina altemiflora Lois., and Panicum hemitomon Shult., was studied under controlled environment conditions. The optimum temperature for maximum photosynthesis was ≈ 36 °C for S. patens, 27 °C for S. alterniflora, and 28 °C for rP. hemitomon. Net photosynthesis rates at optimum temperature averaged 20.1 μmol · mt-2 · st-1 in S. patens, 22.8 μmol · m−2 · s−1 in S. alterniflora, and 11.4 μmol · m−2 · s−1 in P. hemitomon. Photosynthetic light saturation occurred ≈720, 530, and 750 μmol · m−2 · s−1 in S. patens, S. alterniflora, and P. hemitomon, respectively. Only S. patens had a midday depression of stomatal conductance, but net photosynthesis was not reduced by the depression. Maximum stomatal conductances were 285 mmol · m−2 · s−1 in S. patens, 238 mmol · m−2 · s−1 in S. alterniflora, and 335 mmol · m−2 · s−1 in P. hemitomon. In contract, net photosynthesis values were lower in P. hemitomon compared with the Spartina species, indicating a greater degree of water use efficiency of photosynthesis for both Spartina species.  相似文献   

16.
Seedlings of Spartina alterniflora Loisel. from Oregon Inlet, North Carolina were generally taller and produced significantly more culms and total dry weight than those of S. foliosa Trin. from two California populations (Alameda Beach and Marin County) in eight photoperiod-temperature treatments over a 17-wk period. Seedlings of S. alterniflora produced maximal biomass in 30–26 C whereas those of S. foliosa produced maximal biomass in 22–18 C, both under long-day conditions. The average photosynthesis rate for S. alterniflora (3.0 mg C g dry wt−- hr−-1) was 1.6 times higher than that for S. foliosa (1.9 mg C g dry wt−-1 hr−-1), but the dark respiration rates (0.3 and 0.4 mg C g dry wt−-1 hr−-1, respectively) were not significantly different. The proportion of rhizomes was greater under short than long-day conditions for both species in most temperature regimes. The average shoot soluble carbohydrate and starch concentrations were higher for S. foliosa (8.4 and 0.9%, respectively) than those for S. alterniflora (6.0 and 0.4%, respectively). The average rhizome soluble carbohydrate concentration (18%) for S. alterniflora under long-day conditions was significantly lower than that under short-day conditions (28%) and also lower than those for S. foliosa under both long (26%) and short-day (25%) conditions. Rhizome starch concentrations of S. alterniflora were significantly higher in the short than in most long-day temperatures and were generally higher for S. alterniflora than for S. foliosa under short-day conditions. The root starch concentration of S. alterniflora under short-day conditions (1.3%) was higher than that under long-day conditions (0.2%) and also higher than those of S. foliosa under both long (0.2%) and short-day (0.7%) conditions. The two species exhibited similar patterns of carbohydrate storage in belowground organs, similar flower initiation processes not under strict photoperiod control, and similar respiration rates, but significantly different photosynthetic rates and growth responses with S. alterniflora having the potential to be the more productive species.  相似文献   

17.
The effect of waterlogging the vines of two yam varieties for 24, 48 and 72 hours at two stages of growth, with or without fertiliser application, was studied in the field. Waterlogging caused a progressive degeneration of the leaf starting with the development of fresh lesions on the lower leaf surface, through necrotic spots or portions, to complete leaf necrosis. The degree of leaf damage was greater with Um 680 (Dioscorea alata) than with Obiaoturugo (D. rotundata). Waterlogging also caused the breakdown of the apical buds of the vines. The degree of damage increased with the duration of waterlogging. Younger plants suffered more damage than older plants, and plants treated with fertiliser suffered more than plants without fertiliser. Waterlogging ultimately hastened the final senescence of the yam vine. Waterlogging vines for 24 h had no effect on tuber yield, while waterlogging for 48 and 72 h reduced tuber yield by 32.4% and 43.2% respectively (P< 0.01). Waterlogging vines at the early growth stage produced 47.6% (P <0.01) less yield than waterlogging at a later stage. It is suggested that short-term or long-term waterlogging of the yam vine, or parts thereof, is the main cause of reduced leaf area and low yield in unstaked compared with staked yarn crops. Waterlogging may also be a predisposing factor to disease infection of yam vines by soil-borne micro-organisms.  相似文献   

18.
Proline accumulation by eight major species of salt marsh halophytes was examined under growth chamber and field conditions. When the plants were exposed to increasing salinities in the growth chamber, they accumulated proline after a threshold salinity had been reached. Three general patterns were apparent. Limonium carolinianum (Walt.) Britt. and Junius roemerianus Scheele began to accumulate proline at 0.25 m NaCl with accumulations up to 63.6 μmoles per gram fresh weight at higher salinities. The C4 grasses, Spartina alterniflora Loisel., Spartina patens (Aiton) Muhl., and Distichlis spicata (L.) Greene, had threshold salinity levels around 0.5 m NaCl and accumulated proline to 27.4 μmoles per gram fresh weight. The succulents, Salicornia bigelovii Torr., Salicornia virginica L., and Borrichia frutescens (L.) DC, did not accumulate proline until very high salinities (0.7 m) were reached. Water stress imposed by polyethylene glycol instead of NaCl caused similar proline accumulation in the species studied, but to different extents. Field measurements of proline content and soil salinities correlated well with the findings from growth chamber experiments. Rates of proline accumulation and breakdown in L. carolinianum were sufficient for osmotic adjustment by the plant to the changes in interstitial salinity in the marsh. The significance of proline accumulation as an adaptation to the salt marsh environment was species specific. We suggest that proline accumulation is of considerable importance in L. carolinianum and J. roemerianus, important to the C4 grasses at certain times and in certain locations in the marsh, and of little importance in the succulents.  相似文献   

19.
Restoration of salt marsh ecosystems is an important concern in the eastern United States to mitigate damage caused by industrial development. Little attention has been directed to the mycorrhizal influence on plantings of salt marsh species to stabilize estuarine sediments and establish cover. In our study, seedlings of two salt marsh grasses, Spartina alterniflora and Spartina cynosuroides, were grown in soil with a commercial, mixed species inoculum of arbuscular mycorrhizal fungi. Plants were grown in experimental “ebb and flow” boxes, simulating three levels of tidal inundation, to which two levels of applied phosphorus (P) and two levels of salinity were imposed. After 2.5 months, S. alterniflora was poorly colonized by arbuscular mycorrhizae, developing only fungal hyphae and no arbuscules, but S. cynosuroides became moderately colonized. Mycorrhizal inoculation marginally improved growth and P and nitrogen (N) content of both plant species at low levels of P supply but significantly increased tillering in both plant species. This factor could be beneficial in enhancing ground cover during restoration procedures. Greater P availability increased the mycorrhizal status of S. cynosuroides and improved P nutrition of both plant species, despite a reduction in the root‐to‐shoot ratio. Increasing salinity reduced mycorrhizal colonization of S. alterniflora but not of S. cynosuroides. Growth and nutrient content of S. alterniflora was improved at higher levels of salinity, but only increased nutrient content in S. cynosuroides. Increased duration of tidal inundation decreased plant growth in both species, but tissue P and N concentrations were highest with the longest time of inundation in both species.  相似文献   

20.
Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea‐level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full‐factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low‐salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5–12 seedlings per m2) in moderate to well‐drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below‐ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low‐salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea‐level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea‐level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号