首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A method is given which allows us to measure the influence of the mass of a leaf upon the quantity of shoots regenerated in an isolated piece of stem. This method consists in isolating a piece of stem with only two leaves left at the basal node and then splitting the stem lengthwise so that each half has one basal leaf. By leaving one leaf intact while the size of the sister leaf is reduced, the influence of the mass of the leaf upon the quantity of shoots regenerated by the stem can be measured. 2. This method has yielded the result that the mass of shoots regenerated at the apex of such a piece of stem increases under equal conditions and in equal time with the mass of the leaf, and is approximately proportional to the mass of the leaf. 3. Such an influence of the mass of the leaf upon the mass of shoots produced by the stem is only intelligible on the assumption that the growth of the regenerating shoot occurs at the expense of material furnished by the basal leaf. 4. This assumption is supported by two facts: first, that in the dark this influence of the leaf disappears more or less completely; and, second, that a leaf attached to the base of a regenerating stem after some time weighs markedly less than does a sister leaf completely detached from the stem, but otherwise under equal conditions. 5. This latter fact that a leaf when attached to the base of an excised piece of stem wilts more rapidly than when completely isolated is the reason that the proportionality between mass of a basal leaf and mass of shoot regenerated at the apex of an isolated piece of stem cannot always be demonstrated with the same degree of accuracy as the proportionality between the mass of completely isolated leaves and the mass of shoots they produce. 6. The material furnished by the leaf to the stem is not restricted to water but includes also the solutes, since not only the fresh weight but also the dry weight of the shoot regenerated by a piece of stem increases with the mass of the leaf attached to the base of the stem; and since not only the water contents but the dry weight of a leaf attached to the base of an excised piece of stem diminish when compared with the dry weight of a completely detached sister leaf. 7. The mass of shoots produced by an isolated piece of stem without leaf is small and almost negligible compared with the mass of shoots produced by the same piece of stem when a leaf of sufficient mass is attached to the base of the stem.  相似文献   

2.
Shoot growth and histogenesis were followed in five unrelated tree taxa possessing inherently diverse patterns of shoot development. Following the resumption of growth in spring, each species differs quantitatively in the number of internodes elongating contemporaneously, in rates and duration of internodal elongation and seasonal periodicity of shoot growth. The basic pattern of internode elongation and histogenesis is qualitatively similar in each of the dicotyledonous species observed irrespective of growth habit or final form of the shoot produced. During the intial phase of internode development, growth is essentially uniform throughout young internodes, corresponding to an active period of cell division during which time pith cells increase in size to about one-third their final length. Subsequently, the pattern of cell division shifts progressively upward concomitant with increased elongation and maturation of pith cells in the basal portion of developing internodes. Thereafter, a wave of cell division accompanied by cell elongation continues to proceed acropetally until growth finally ceases in the distal portion of each internode. As long as internode elongation continues, frequently at distances 15–20 cm below the shoot apex, cell divisions still occur in the distal growing portion. As successive portions of each internode mature acropetally, final length of pith cells becomes relatively uniform throughout the internode. During the process of internode growth and development, cell lengths increase only two- to threefold, whereas cell numbers increase ten- to 30-fold, indicating the dominant role of cell division and increases in cell number to final internode length. Morphological patterns of shoot expression associated with differences in internode lengths along the axis of either preformed or neoformed shoots, as well as sylleptic branches, are due to differences in cell number rather than final cell length. Significant variations in final internode lengths along the axis of episodic shoots, caused by either endogenous or exogenous factors, are also attributed to differences in cell number.  相似文献   

3.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

4.
NIKLAS  KARL J. 《Annals of botany》1990,65(5):505-512
The elastic (Young's) modulus and flexural rigidity of internodeswith and without their clasping leaf sheaths were determinedfor culms from two cultivars (‘Astro’) and (‘Garry’)of Avena sativa L. Data indicate that early in the developmentof culms, leaf sheaths can have a higher elastic modulus thanthe internodes they envelope, and by virtue of their location,leaf sheaths contribute significantly to the flexural rigidity(hence, resistance to bending) of internodal segments. As culmsmature, the elastic modulus of leaf sheath and internodal tissuesreach parity. However, because of the acropetal pattern by whichnew internodes are produced by shoot apices, sheaths continueto provide mechanical support to distal internodes, particularlythe peduncle. Data for the two cultivars indicate that the elasticmodulus and flexural rigidity of culms can vary significantlywithin the species. Comparisons between the flexural rigidityof the two cultures and the resistance of stems to lodging indicatethat flexural rigidity is not significant to lodging. The engineeringprinciples relevant to the mechanical advantages conferred byclasping leaf sheaths are discussed within the context of grassshoot morphology. Biomechanics, leaf sheath, Avena, elastic modulus  相似文献   

5.
Predictions from a mechanical model for hollow vertical stems are tested against morphometric and mechanical studies of the vertical stems of Equisetum hyemale. The model predicts 1) that the wall thickness of hollow internodes must be at least 15% of the external radius of shoots, 2) that the elastic modulus of stems is quantitatively related to the ratio of apoplast (cell walls) to symplast (cytoplasm) areas in transverse sections through stems, and that (3) hollow stems are designed to sustain an additional and significant proportion of their own weight. The “safety factors” predicted for a hollow vertical stem are used to examine two adaptationist explanations for hollow stems: 1) “economy in design,” which argues that natural selection will favor a reduction in the metabolic cost in constructing an organ, and 2) “mechanical design,” which argues that stems are designed to maximize their mechanical stability during vertical growth. Evidence from E. hyemale indicates that 1) there is a developmental limit to the maximum allotment of biomass invested in the construction of stems, 2) as stem height increases, morphometric adjustments in internodal wall thickness occur which converge on predicted safety limits, and 3) the elastic modulus of stems changes as a function of the ratio of apoplast to symplast areas seen in transverse sections through shoots. Biomechanical and developmental evidence and the allometry of E. hyemale stems are consistent with the view that stems are designed for safety and are inconsistent with some predictions based on the economy in design.  相似文献   

6.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

7.
Thomson, Betty F., and Pauline Monz Miller. (Connecticut Coll., New London.) The role of light in histogenesis and differentiation in the shoot of Pisum sativum. III. The internode. Amer. Jour. Bot. 50(3): 219–227. Illus. 1963.—Seedlings of Pisum sativum were grown under constant conditions and exposed daily to red or white fluorescent light or kept in total darkness. Counts and measurements of internodal cells in both transverse and longitudinal directions show that light does not alter the sequence or pattern of tissue differentiation, including the sequence of xylem maturation within the vascular bundle. Light does accelerate the rate of a constant course of differentiation. Light advances the time of division and enlargement of cortex, xylem, phloem, and pith cells in the longitudinal direction but reduces both the final number and the final length attained in all cases. It is concluded that light accelerates all phases of shoot growth and differentiation and that cell division and elongation in the later phases of internodal growth are reduced by light because of accelerated cell maturation.  相似文献   

8.
Aucuba japonica , an evergreen broad-leaved shrub. Aucuba Japonica var. borealis is widely distributed in heavy snowfall areas in Japan and is covered, shaded and physically pressured by snow for more than four months of the year. On the other hand, var. japonica is widely distributed in light snowfall areas. The sizes of new shoots and leaves were significantly different between the two varieties with different critical shoot sizes for flowering. The average new shoot dry mass of var. borealis was about one third of that of var. japonica. Despite the differences in growing conditions and shoot size, no significant differences were observed in the allometry of their shoot organs between the two varieties. Large new shoots had thicker and longer stems per biomass than small shoots because of their larger pith volume. The large shoots showed higher efficiency of stem growth per invested biomass and had a higher rate of annual height increase than small shoots. When the size of new shoot rapidly increased from year to year, i.e. the plants are growing well, initiation of flowering was postponed and vegetative growth continued. Small new shoots were tolerant of low productivity conditions but traded vertical growth for an increase in matter allocation to leaves. Received 8 July 1999/ Accepted in revised form 1 September 2000  相似文献   

9.
Representative shoot segments of the grass speciesArundinariatéctaconsisting of one intact internode and its subtendingnode and clasping leaf sheath were tested to determine the mechanicalinfluence of the leaf sheath on the ability of stems to resistbending and twisting forces. These segments were also used tomeasure shoot morphometry and composite tissue Young's and shearmoduli (EandG,respectively) to simulate the global deformationpatterns attending bending and twisting by means of finite elementanalyses. On average, leaf sheaths contributed 33% of the overallbending stiffness and 43% of the overall torsional stiffnessof stem segments. Comparisons betweenEandGof isolated internodesand leaf sheaths indicated that sheaths were composed of stiffertissues measured either in bending or twisting. Thus, leaf sheathscould act as an external cylindrical brace composed of stiffermaterials than those of the internodes they enveloped. The magnitudesof internodalEandGwere correlated with internodal shape suchthat the ability of internodes to resist twisting relative tothe ability to resist bending forces decreased as internodesbecame more slender or developed thinner walls (both of whichoccur in an acropetal direction from the base to the tip ofshoots). Finite element simulations predicted that, in bending,the leaf sheath laterally braces internodal walls as they tendto ovalize in cross section and push against its inner surfacewhich ovalizes to a lesser extent in the plane normal to thecurvature of shoot flexure. In twisting, the successive ovalizedtransections of internodal walls assumed a helical pattern alongthe length of shoot segments. This helical deformation patternwas attended by an inner lateral contraction of internodal wallsthat was less developed in the leaf sheath that thus provideddecreasing mechanical support to the internode as the lateralcontraction of internodal walls amplified. The twisting of internodesand sheaths was also predicted to concentrate tensile and shearstrains in the nodal diaphragm. Here stress intensities sufficientto produce tissue shear failure were concentrated at two opposingpoints on the surface of the diaphragm. Finite element analysesthus identified a potential weak point in the mechanical constructionof hollow, septate shoots that are, nevertheless, more thanadequately stiff to support their own weight, yet sufficientlyflexible to twist without irreparable damage in normal winds.Copyright1998 Annals of Botany Company Plant stems; nodes; internodes; leaf sheaths; elastic moduli; wind lodging; biomechanics.  相似文献   

10.
Structural and hydraulic correlates of heterophylly in Ginkgo biloba   总被引:1,自引:0,他引:1  
This study investigates the functional significance of heterophylly in Ginkgo biloba, where leaves borne on short shoots are ontogenetically distinct from those on long shoots. Short shoots are compact, with minimal internodal elongation; their leaves are supplied with water through mature branches. Long shoots extend the canopy and have significant internodal elongation; their expanding leaves receive water from a shoot that is itself maturing. Morphology, stomatal traits, hydraulic architecture, Huber values, water transport efficiency, in situ gas exchange and laboratory-based steady-state hydraulic conductance were examined for each leaf type. Both structure and physiology differed markedly between the two leaf types. Short-shoot leaves were thinner and had higher vein density, lower stomatal pore index, smaller bundle sheath extensions and lower hydraulic conductance than long-shoot leaves. Long shoots had lower xylem area:leaf area ratios than short shoots during leaf expansion, but this ratio was reversed at shoot maturity. Long-shoot leaves had higher rates of photosynthesis, stomatal conductance and transpiration than short-shoot leaves. We propose that structural differences between the two G. biloba leaf types reflect greater hydraulic limitation of long-shoot leaves during expansion. In turn, differences in physiological performance of short- and long-shoot leaves correspond to their distinct ontogeny and architecture.  相似文献   

11.
Internodal explants from etiolated `Royal Gala' apple shoots were compared with those from non-etiolated shoots for frequency of shoot organogenesis and for efficiency of β-glucuronidase (GUS) expression after cocultivation of explants with Agrobacterium tumefaciens strain EHA105 (p35SGUSint). First (youngest) internodal explants from etiolated shoots produced 2-, 8- and 73-fold numbers of shoots compared to second, third, and fourth internodal explants, respectively. Moreover, these explants produced sevenfold the number of shoots as similar explants from non-etiolated shoots. All first internodes from etiolated shoots exhibited GUS-expressing zones and yielded fourfold as many GUS-expressing zones as commonly used leaf explants from non-etiolated shoots, which exhibited GUS-expressing zones in only 63% of the explants. An average of 9.8 GUS expressing calli per explant were observed on first internodes from etiolated shoots 2 weeks after cocultivation with A. tumefaciens. Received: 17 February 1998 / Revision received: 5 May 1998 / Accepted: 15 May 1998  相似文献   

12.
Rapid shoot proliferation was established by adventitious shoot formation on internodal segments. Cross sections of the shoot initiation area were observed microscopically and adventitious shoots were studied under the scanning electron microscope. Shoots were directly formed on the epidermis of internodal segments in vitro without callusing, but not on that of nodal segments with axillary buds. The use of media containing 0.01 – 0.1 mg/l 6-benzyladenine or 0.1 mg /l kinetin and culture under 16 h light increased the number of shoots per segment. The shoots thus obtained were rooted on phytohormone-free Woody Plant or Gamborg B5 solid medium, and were then transferred to soil. When potted, these grew well in a greenhouse. The emetic alkaloid content of adventitious shoots and regenerated plants was determined by HPLC. In vitro shoots cultured in Woody Plant liquid medium supplemented with 0.01 – 0.1 mg/l 6-benzyladenine contained 0.04 – 0.07 % dry wt. emetine and 0.4 – 0.5 % dry wt. cephaeline. One-year old regenerated plants cultivated in a greenhouse demonstrated the same alkaloid content (roots contained 0.82 % dry wt. emetine and 2.16 % dry wt. cephaeline) as the parental plant.Abbreviations MS Murashige — Skoog (Murashige and Skoog 1962) - 1/2 MS half strength MS - B5 Gamborg B5 (Gamborg et al. 1968)] - WP woody plant (Lloyd and McCown 1980) - RC root culture (Thomas and Davey 1982) - HF phytohormone free - BA 6-benzyladenine - Kin kinetin - SEM scanning electron microscopy - RDF rotating drum fermenter  相似文献   

13.
Shoot cultures of four genotypes of Populus deltoides Bartr. ex Marsh. were established from adventitious shoots regenerated from internodal stem explants. Stable shoot cultures for all four genotypes were maintained in a continuous culture regime for over one year. The stable shoot cultures were used as explants to investigate the effects of zeatin concentration and genotype on axillary shoot production and growth. The concentration of zeatin significantly affected the production of axillary shoots, with 1.0 mgL–1 zeatin producing the greatest number of shoots (31.0 shoots per culture vessel) while 0.25 mgL–1 zeatin produced the greatest growth (5.9 mg per axillary shoot) when measured by dry weight accumulation per shoot. Genotypic differences were significant in the production and growth of axillary shoots.Abbreviations DKW Driver and Kuniyuki Walnut medium - PAR Photosynthetically Active Radiation Journal Series No. 9111, Agricultural Research Division, University of Nebraska  相似文献   

14.
The location and some morphological, anatomical, and functional aspects of the gravity-sensitive pulvini of a selected number of grass shoots are examined. There are two distinct gravity-sensitive regions near the nodal regions of Gramineae. One, the leaf sheath pulvinus, is located at the base of the sheathing leaf bases, and is characteristic of the subfamily Festucoideae. The other, the internodal pulvinus, is located at the base of the internode, a little above the nodal joint. Most members of the Panicoideae possess internodal pulvini, in addition to more or less developed leaf sheath pulvini. Three members of the Oryzoideae examined possess leaf sheath pulvini only, while Phragmites australis (Arundinoideae) possesses both leaf sheath and internodal pulvini. Leaf sheath pulvini of some grasses develop hairs, cork-silica cell pairs or stomatal apparatuses over the epidermis while many others are devoid of any such idioblasts. Both the leaf sheath and internodal pulvini of all grasses examined preferentially exclude, or accumulate very little silica, whereas the regions of the shoot immediately above and below the pulvini in these same grasses accumulate large quantities of silica. Pulvini remain unsilicified or poorly silicified throughout their life and even after several days following geotropic bending. Pulvini are also distinguished from the regions above and below them by the lack of lignin in the bundle cap cells. Lignin is found only in the xylem vascular tissue, and this consists of annular and helical vessel elements only. The bundle cap cells are rich in pectin and are described as collenchymatous. All pulvini possess specialized zones of cells containing starch statoliths. In response to horizontal displacement of the shoots, the lower side of the pulvini grows by cell elongation only. The collenchymatous cells stretch in a manner that results in alternately thin and thick regions of cell wall.  相似文献   

15.
Summary Micropropagation of Scabiosa caucasica cv. Caucasica Blue was achieved by culturing, separating axillary and adventitious shoots, or node sectioning on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA). The highest frequency of adventitious shoots regenerated from nodal or internodal explants and leaf blade (with or without petiole) appeared to occur on MS medium with 4.4 and 18 μM BA, respectively. Addition of 0.19 or 1.9 μM α-naphthaleneacetic acid to the BA-containing medium promoted callus formation and reduced shoot organogenesis. During micropropagation, shoot nodal explants derived from in vitro shoots cultured on MS medium supplemented with 4.4 μM BA yielded 8.9 shoots per explant within 40 d after culture initiation.  相似文献   

16.
Different vegetative parts of Brassica alboglabra seedlings and mature plants were used as explants in culture.A high frequency (60–100%) of shoot regeneration was obtained from hypocotyl explants, nodal stem segments, internodal segments and shoot apices cultured on Murashige-Skoog basal medium. Addition of 6-benzylaminopurine and kinetin increased the average number of shoots per explant. When detached and transferred to basal medium, the shoots readily developed roots. Regenerated plantlets could be successfully transplanted in soil.  相似文献   

17.
The mechanical behavior of plant tissues and its dependency on tissue geometry and turgor pressure are analytically dealt with in terms of the theory of cellular solids. A cellular solid is any material whose matter is distributed in the form of beamlike struts or complete “cell” walls. Therefore, its relative density is less than one and typically less than 0.3. Relative density is the ratio of the density of the cellular solid to the density of its constitutive (“cell wall”) material. Relative density depends upon cell shape and the density of cell wall material. It largely influences the mechanical behavior of cellular solids. Additional important parameters to mechanical behavior are the elastic modulus of “cell walls” and the magnitude of internal “cell” pressure. Analyses indicate that two “stiffening” agents operate in natural cellular solids (plant tissues): 1) cell wall infrastructure and 2) the hydrostatic influence of the protoplasm within each cellular compartment. The elastic modulus measured from a living tissue sample is the consequence of both agents. Therefore, the mechanical properties of living tissues are dependent upon the magnitude of turgor pressure. High turgor pressure places cell walls into axial tension, reduces the magnitude of cell wall deformations under an applied stress, and hence increases the apparent elastic modulus of the tissue. In the absence of turgid protoplasts or in the case of dead tissues, the cell wall infrastructure will respond as a linear elastic, nonlinear elastic, or “densifying” material (under compression) dependent upon the magnitude of externally applied stress. Accordingly, it is proposed that no single tangent (elastic) modulus from a stress-strain curve of a plant tissue is sufficient to characterize the material properties of a sample. It is also suggested that when a modulus is calculated that it be referred to as the tissue composite modulus to distinguish it from the elastic modulus of a noncellular solid material.  相似文献   

18.
Tissue proliferation (TP) is characterized primarily by the formation of galls or tumors at the crown of container-grown rhododendrons that were initially propagated in vitro. In the cultivar 'Montego', TP-like symptoms are first observed in vitro as shoot clusters with small leaves and nodal tumors. In addition, unlike the normal in vitro non-TP (TP-) shoots, in vitro TP (TP+) shoots proliferate rapidly without the presence of the plant growth regulator cytokinin in the tissue culture medium. Comparisons of the anatomy of TP+ and TP- shoot tips showed that TP+ shoots had a less developed vascular system, longer cells in the pith and cortex, and altered internodal elongation at the shoot apex. In addition, TP+ axillary buds were abnormal in that they were displaced onto the stem above the leaf axil, and a small group of proliferating cells replaced the shell zone at the base of the bud. Initiation of tumor formation began with the expansion of this region of cell proliferation (RCP) and shoot growth from the abnormal axillary bud (tumor bud). Organization of the tumor bud and extension of the RCP characterized the further development of two types of tumors. In polar shoot tumors, shoot growth continued from the persistent tumor bud and the tumor at the base of the shoot remained small in size. The RCP extends downward to the vascular junction of the subtending leaf and the stem of the TP+ shoot. In nonpolar tumors, continuous de novo meristem formation led to the development of large tumors with or without shoots. The RCP is present throughout the tumor and is associated with de novo meristem formation. Comparisons to the anatomy of other tumor-like structures showed that TP tumors of Rhododendron 'Montego' are most similar to tobacco genetic tumors.  相似文献   

19.
Explants of shoot tips, internodal stem sections, and leaf segments of Lisianthus, Eustoma grandiflorum (Griseb.) Schinners, Dwarf Purple were cultured in vitro on modified Murashige and Skoog (MS) media. Explants of shoot tips and internodal stem sections developed into multiple shoots, whereas, leaf segments turned chlorotic on a medium supplemented with 3 mgl-1 benzyladenine (BA) and 0.2 mgl-1 naphthalene acetic acid (NAA). Shoot proliferation was obtained on shoot tips and leaf segments with 3 mgl-1 BA, but internodal stem sections became necrotic and died on this medium. Rooting was induced in cultures with multiple shoots by subculturing explants on a half-strength MS medium supplemented with 2 mgl-1 indole-3-acetic acid (IAA). Rooted plantlets were successfully transferred to soil.  相似文献   

20.
Medullary bundles are absent from the pith of the leafy, relictual cacti (genus Pereskia) but are present in most members of subfamily Cactoideae. They are absent only from tribes Hylocereeae, Rhipsalideae, and some members of Cacteae and Notocacteae. Presence of medullary bundles tends to be correlated with presence of a broad pith, but exceptions occur. Most medullary bundles are collateral, and in all genera phloem is produced and accumulates throughout the lifetime of the bundle. Xylem definitely accumulates as medullary bundles age in some groups, but it definitely does not accumulate in others, being produced only while the bundle is young. Pith can be broad (up to 75 mm in diameter), can constitute half the shoot volume, and is long-lived, remaining alive as long as the shoot is alive. Medullary bundles appear to be adaptive in allowing this large pith to be used for storage of water and starch. Medullary bundles have fewer, narrower tracheary elements than does the stele xylem in the same region; medullary bundles probably could not carry out significant longdistance transport if a major part of the stele becomes damaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号