首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared genetic variation of sexualAmelanchier bartramiana and facultatively agamospermous (asexually seed-producing)A. laevis at one site where the two species are sympatric. We analyzed 77 random amplified polymorphic DNA (RAPD) markers in 29A. bartramiana individuals and 76 RAPD markers in 31A. laevis individuals. The two species do not differ significantly in mean genetic variation. However, 22.4% of genetic similarity values betweenA. laevis individuals exceed the highest value ofA. bartramiana and may represent the effect of agamospermy. Variation withinA. laevis may be the result of sexuality, hybridization, polyploidy, and other factors.  相似文献   

2.
An experimental crossing program was carried out in order to test the hypothesis thatArmeria villosa subsp.carratracensis, a serpentine endemic from Southern Spain, is of hybrid origin. Fruit-set and mainly pollen stainability data in artificial hybrids demonstrate that internal interspecific barriers are weak. Two generations of backcrossing with the two putative parents —A. colorata andA. villosa subsp.longiaristata— can restore pollen stainability to an average of 83.2 and 68.7, respectively. A morphometric analysis of 148 specimens belonging to parental species, different artificial hybrid generations and wild putative hybrid race shows that (1) morphological characters have a strong genetic basis and thus are good markers in identifying hybrids and introgression inArmeria; (2) artificial backcrossing produces in morphometrical characters a variation which conforms in both trend and magnitude to what is commonly attributed in the wild to introgression; (3) the position of the putative hybrid race is intermediate between the two parental species used in the program. These results are in accordance with the hypothesis of hybrid origin ofA. villosa subsp.carratracensis. Natural and experimental hybridization inArmeria, I  相似文献   

3.
Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.  相似文献   

4.
The Raoulia alliance is remarkable for the occurrence of rare wild hybrids between five of its six genera. In this study, the potential for hybridization beyond the F1 generation between Anaphalioides bellidioides and Ewartia sinclairii was investigated. Three putative hybrids were raised from open-pollinated seeds collected from a site where wild A. bellidioides, E. sinclairii and their intergeneric hybrids occur. Multivariate analysis of morphological data strongly indicated that two of the seed-raised hybrids were backcrosses to A. bellidioides; the paternal parent of the third plant, raised from a seed collected from a wild hybrid, was equivocal. Artificial crosses and evaluation of seed germinability demonstrated that wild A. bellidioides × E. sinclairii are partially fertile and capable of giving rise to viable backcrosses and advanced-generation hybrids. Possible reasons for the apparent rarity of wild hybrids between A. bellidioides and E. sinclairii are discussed briefly.  相似文献   

5.
We used Nomarski differential interference contrast microscopy of cleared, whole ovules to examine megasporogenesis and megagametogenesis in tetraploid (N = 34) individuals of three species of Amelanchier in Maine. Amelanchier canadensis and A. stolonifera conform to the general pattern of apomixis in the Maloideae by being aposporous and by frequently forming more than one megagametophyte per megasporangium. These species are also pseudogamous; both self and foreign pollen elicit fruit set. Amelanchier bartramiana follows a sexual pattern by producing a triad of megaspores and almost always only one megagametophyte per megasporangium. This boreal shrub, strikingly distinct morphologically and in its habitat preference from other North American species of the genus, is primitive in its sexuality and self-incompatibility relative to other species we have studied.  相似文献   

6.
Within a broad (>200 km wide) hybrid zone involving three parapatric species of Aesculus, we observed coincident clines in allele frequency for 6 of 14 electrophoretic loci. The cooccurrence of alleles characteristic of A. pavia, A. sylvatica, and A. flava was used to estimate genetic admixtures in 48 populations involving various hybrids between these taxa in the southeastern United States. High levels of allelic polymorphism (up to 40% greater than the parental taxa) were observed in hybrid populations and also in some populations bordering the hybrid zone. A detailed analysis of a portion of the hybrid zone involving A. pavia and A. sylvatica revealed a highly asymmetrical pattern of gene flow, predominantly from Coastal Plain populations of A. pavia into Piedmont populations of A. sylvatica. Computer simulations were used to generate expected genotypic arrays for parental, F1; and backcross individuals, which were compared with natural populations using a character index scoring system. In these comparisons, hybrid individuals could be distinguished from either parent, but F1 and backcross progeny could not be distinguished from each other. Most hybrid populations were found to include hybrids and one of the parental taxa, but never both parents. Three populations appeared to be predominantly hybrids with no identifiable parental individuals. Hybrids occurred commonly at least 150 km beyond the range of A. pavia, but usually not more than 25 km beyond the range of A. sylvatica. Introgression, suggested by genetically hybrid individuals and significant gene admixtures of two or more species in populations lacking morphological evidence of hybridization, may extend the hybrid zone further in both directions. The absence of one or both parental species from hybrid populations implies a selective disadvantage to parentals in the hybrid zone and/or that hybridization has occurred through long-distance gene flow via pollen, primarily from A. pavia into A. sylvatica. Long-distance pollen movement in plants may generate hybrid zones of qualitatively different structure than those observed in animals, where gene flow involves dispersal of individuals.  相似文献   

7.
Hybridization and introgression are thought to be important for speciation and adaptation in many plants. However, little is known about the hybridization and introgression among Cypripedium species. To investigate the evidence for hybridization and the pattern of introgression between Cypripedium yunnanense and C. tibeticum in Shangrila County, Yunnan Province, China, morphological characters and amplified fragment length polymorphism (AFLP) data for both the species and their putative hybrids were studied. Hand pollination was also performed to verify the crossability of the putative parents. Principal coordinate analysis based on morphological characters and the AFLP data suggested that the putative hybrids were true hybrids of these two Cypripedium species. Analysis with the NewHybrids software indicated that the putative hybrids were F1 generation individuals and backcrosses to C. yunnanese, but no F2 generation was found. Analysis with the Structure software demonstrated asymmetric introgression from C. tibeticum to C. yunnanense. We conclude that natural hybridization and introgression can occur between these two species and that in situ conservation of the parental species is required before fully assessing the evolutionary potential of hybrids.  相似文献   

8.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Emasculated crosses of Agropyron albicans Scribn. & Smith with A. dasystachyum (Hook.) Scribn., Sitanion hystrix (Nutt.) J. G. Smith, and Elymus canadensis L. yielded 34, 5, and 9 viable hybrid seeds from 66, 45, and 52 florets, respectively. The hybrids were for the most part morphologically intermediate between their respective parents. The parents behaved cytologically as allotetraploids, 2n = 28; but meiosis in A. albicans was somewhat more irregular than in the other three species. Chromosome pairing was good in all hybrids and indicated that the genomes of the parent species were closely homologous, but only the A. albicans × A. dasystachyum hybrids set seed. Although closely related, A. albicans and A. dasystachyum are not fully conspecific. Agropyron albicans was considered to be a subspecies of A. dasystachyum, as were A. riparium Scribn. & Smith and A. griffithsii Scribn. & Smith ex Piper.  相似文献   

10.
Biosystematic relationships among species assigned to three subgenera of the genus Dicentra were investigated with respect to hybridization and chromosomal constitution and fertility of the hybrids. Four species of subgenus Dicentra, D. formosa, D. eximia, D. nevadensis, and D. peregrina, were intercrossed in various ways to form diploid, triploid, and tetraploid hybrids. Hybrids at the tetraploid level in this subgenus invariably were highly fertile. Triploid hybrids, as expected, were mostly very sterile. Diploid hybrids varied in this respect, but none was highly fertile. Crosses with two of the remaining four species of subgenus Dicentra produced no hybrids, but abundant seed was obtained in one instance. The two species of the subgenus Chrysocapnos, D. chrysaniha and D. ochroleuca, cross to produce a partially fertile tetraploid hybrid, but cross-pollinations involving these species with those of other subgenera failed. The single species of subgenus Hedycapnos, D. spectablis (diploid) produced no hybrids when cross-pollinated with members of the other two sections. These results are fully concordant with presumed affinities based on morphological similarity In addition, preliminary results of hybridization between the monocotyledonous D. peregrina and a number of dicotyledonous species of Dicentra are reported.  相似文献   

11.
To understand the evolutionary consequences of hybridization between the outcrossing plant Geum rivale (Rosaceae) and the selfer Geum urbanum, we tested the predictions of two simple models that assume either (A) low or (B) high pollen fitness in hybrids. Model A predicts only four genotypic classes (G. rivale, G. rivale backcross [BCR], F1, and Geum urbanum) and asymmetric introgression from inbreeding to outbreeding species. Model B predicts additional genotypic classes and potential generation of novel inbreeding lines in the hybrid swarm. Amplified fragment length polymorphism (AFLP) analysis of adults revealed only the four genotypes predicted by model A. However, microsatellite analysis of parent–progeny arrays demonstrated production of selfed offspring by F1 and BCR maternal parents and contribution of these genotypes to outcross pollen pools, as predicted by model B. Moreover, AFLP and morphological analysis showed that the offspring generation comprised genotypes and phenotypes covering the entire spectrum of variation between the two parental species, in line with model B. A common garden experiment indicated no systematic reduction in fitness of offspring derived from hybrid parents. The genetic structure of the adults in the Geum hybrid swarm cannot be explained by restricted mating patterns but may result from ecological selection acting on a diverse offspring population.  相似文献   

12.
The butterfly genus Zizina in New Zealand has a complex taxonomic history due to the presence of morphological intermediates between the two species, the endemic Z. oxleyi and the introduced Z. labradus, in a putative hybrid zone on the east coast of the South Island of New Zealand. This makes species identification in the field problematic, particularly as the presence of hybrids has not been confirmed. We address this uncertainty through morphological and molecular analyses. Specimens were collected from a range of locations in New Zealand, as well as from Australia, and measurements were made of male genitalia and ventral wing coloration. Two mitochondrial genes (COI, ND5) and three nuclear gene fragments (28S, ITS2 and wingless) were also sequenced for a selection of individuals, and the presence of Wolbachia species in genomic DNA was tested. The two species were separable in morphological space, although there was some overlap, and the contact zone appeared to be around Kaikoura on the east coast of the South Island. Furthermore, specimens from the putative hybrid zone could be classified as Z. oxleyi using morphological characters individually, but not when these were used in a principal component analysis. Molecular analysis showed that there was a mean sequence divergence of 2.0% between two clades for COI, and 4.1% for ND5, but suggested that the contact zone between them was in the north‐west of the South Island. However, there was only a single clade for each of the three nuclear markers. It is thought that this incongruence between morphological and molecular markers is indicative of hybridization which is more extensive than previously thought. However, the possibility that recent speciation has occurred or is occurring is not ruled out.  相似文献   

13.

Background  

Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis) and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri). In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females.  相似文献   

14.
In eusocial Hymenoptera, haplodiploid life cycles, obligate sterile castes, and polyandry may facilitate selection for hybridization. We analyzed a broad hybrid zone between the ecologically distinct seed‐harvester ants Pogonomyrmex occidentalis (Cresson) and Pogonomyrmex maricopa (Wheeler) using mitochondrial (mt)DNA sequence data, eight morphological markers, and 14 random amplified polymorphic DNA (RAPD) markers. Average mtDNA sequence divergence among parental species was 11.34%, indicating secondary contact. RAPD markers were significantly correlated with morphological variation, confirming the interspecific hybrid origin of all morphologically putative hybrid colonies. A morphological hybrid index indicates an abundance of both F1 hybrids and parental morphotypes within colonies. Individual character frequencies plotted against distance show coincident and concordant clines, suggesting little to no introgression. The structure of the hybrid zone is two‐fold. Within the western region, stark reversals in character frequencies coincide with overt soil differences, indicating a mosaic hybrid zone structure. The eastern region is a riparian habitat where four adjacent populations were composed entirely of hybrid colonies. These habitat associations suggest that hybrid worker genomes permit dispersal into intermediate environments that select against one or both parental species. The present study suggests that, in addition to retaining reproductive compatibility, ecologically distinct species of ants may generate hybrid colonies maintained by environmental selection. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 320–336.  相似文献   

15.
Artificial second generation and backcross hybrids involvingEchinocereus dasyacanthus (Texas rainbow cactus),E. coccineus (a species of claret-cup cactus), andE. ×lloydii (Lloyd's hedgehog cactus) were examined for morphological and reproductive characteristics. The hybrids grew from seed to flower in about four years, and they exhibited high fertility as measured by pollen stainability, crossability, and fruit-set. A rare breeding system inCactaceae, dioecy, was further examined inE. coccineus, using field and controlled pollination tests. Functional dioecy was documented forE. coccineus in Trans-Pecos Texas. All results suggested thatE. ×lloydii in eastern Pecos County, Texas, is a complex and dynamic population probably comprising first and later generation hybrids, including backcross hybrids. The experimental hybridizations also tended to support the occurrence of introgression into both putative parental species.  相似文献   

16.
Hybrids between the minnows Phoxinus eos and Phoxinus neogaeus coexist with a population of P. eos in East Inlet Pond, Coos Co., New Hampshire. Chromosome counts and flow cytometric analysis of erythrocyte DNA indicate that these hybrids include diploids, triploids, and diploid-triploid mosaics. The mosaics have both diploid and triploid cells in their bodies, even within the same tissues. All three hybrid types are heterozygous at seven putative loci for which P. eos and P. neogaeus are fixed for different allozymes, indicating that the hybrids carry one eos and one neogaeus haploid genome. The diploid hybrids are therefore P. eos-neogaeus, whereas the triploids and mosaics are derived from P. eos-neogaeus but have an extra eos or neogaeus genome in all or some of their cells. Diploid, triploid, and mosaic hybrids accept tissue grafts from diploid hybrids, indicating that all individuals carry the identical eos-neogaeus diploid genome. Thus, one P. eos-neogaeus clone exists at East Inlet Pond. Grafts among the triploids and mosaics or from these individuals to diploid hybrids are rejected, indicating that the third genome is different in each triploid and mosaic individual. In this study, diploid and mosaic hybrids, carrying the clonal eos-neogaeus genome, were bred in the laboratory with males of P. eos or P. neogaeus. Both diploid and mosaic hybrids produced diploid, triploid, and mosaic offspring, revealing the source of the three hybrid types present at East Inlet Pond. These offspring accepted grafts from P. eos-neogaeus individuals, indicating that they all had inherited the identical eos-neogaeus genome. Most grafts among triploid and mosaic progeny, or from these individuals to their diploid broodmates, were rejected, indicating that the third genome was different in each triploid and mosaic (as was observed in the wild hybrids) and was contributed by sperm from males of P. eos or P. neogaeus. Diploid progeny are produced if sperm serves only to stimulate embryogenesis; triploid or mosaic progeny are produced if the sperm genome is incorporated. Although based on a mode of reproduction that by definition results in a genetically identical community of individuals, i.e., gynogenesis, reproduction in hybrid Phoxinus results in a variety of genetically distinct individuals by the incorporation of sperm into approximately 50% of the diploid ova produced.  相似文献   

17.
Recent years have seen the development of molecular‐based methodologies to investigate hybridization and its impact on the evolutionary process. However, morphological characterization of hybrid zones has only scantily been considered, especially in zootaxa. Thus, the level of congruence between molecular and morphological characters when attempting to detect hybrids remains a poorly tackled area. The genets (genus Genetta) provide an ideal case study for further investigation of the respective contribution of morphology and DNA in hybrid zone characterization because (1) their morphology has recently been exhaustively explored and (2) the existence of hybrid zones in southern Africa was proposed in the literature. We assessed levels of hybridization among the southern African genets, and questioned the role of ecological factors on the hybridization patterns detected. We used an integrative approach involving nine discrete morphological characters and a diagnostic discriminant function, geometric morphometrics and sequences of cytochrome b including collection specimens. The combination of independent materials allowed us to accurately reassess the level of hybridization in southern African genets, and revealed cryptic, interspecific gene flows. Morphology unambiguously detected a low number of G. maculata × G. tigrina hybrids and rejected the hypothesis of a large intergradation zone in KwaZulu‐Natal, thus supporting the species status of the two genets. Cytochrome b analyses revealed: (1) cryptic, massive hybridization between G. tigrina and the sympatric G. felina, and (2) a trace of reticulation (one sequence) between G. tigrina and the allopatric G. genetta. The type specimen of G. mossambica Matschie, 1902 is considered to be a morphological hybrid between G. maculata and G. angolensis. Remarkably, the morphological approaches (discrete characters and morphometrics) proved complementary to conclusions derived from cytochrome b sequences. Whilst morphometrics was generally unable to accurately identify all putative hybrids, this approach revealed diagnostic cranial shape differences between recognized species as well as the cryptic G. ‘letabae’ (included in the super‐species G. maculata). Morphometrics also confirmed the diagnostic value and age dependency of discrete characters. Our integrative approach appeared necessary to the detection of cryptic hybridizations and to the comprehensive characterization of hybrid zones. The recurrent detection of hybrids exhibiting tigrina‐like coat patterns may suggest (1) asymmetric hybridization of G. tigrina males to females of other species and (2) positive selection for tigrina‐like phenotype in South African habitats, but these hypotheses will have to be further tested using other sources of evidence. Despite the precise mosaic of hybrid zones identified in southern African genets, the environmental factors that shape patterns of distribution of hybrids remain unclear. Nevertheless, in the light of our range reassessment, it appears that seasonality of precipitation and periods of annual frost may play stringent roles in the distribution of genets. The complementarity of our results based on morphology and molecules is regarded as encouraging for the further development of integrative approaches in order to better understand the complex phenomena that underlie hybridization processes. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 11–33.  相似文献   

18.
A recent increase in the abundance of cattails (Typha spp.) in North American wetlands has been anecdotally linked with hybridization between Typha latifolia and Typha angustifolia. In this study, we used molecular genetic markers (microsatellites) to investigate whether the hybrid lineage (Typha × glauca) is restricted to The Great Lakes region, or exists across a much broader spatial scale. We also investigated the possibility of backcrossing and genetic introgression in natural populations. Parental species could be distinguished from one another based on the distribution of alleles at six microsatellite loci. Species identification based on genetic data corresponded well with species identifications based on leaf width, a key morphological trait that can distinguish the two parental species. We found that hybrids occur in Ontario, Quebec, New Brunswick, and Nova Scotia, but we did not detect hybrids in Maine. F1s are more abundant than backcrossed or intercrossed hybrids, although we also found evidence of backcrossing, particularly in Ontario. This indicates that hybrids are fertile, and are therefore potential conduits of gene flow between the parental species. Further work is needed to determine whether T. × glauca is particularly successful in the Great Lakes region relative to other areas in which the two parental species co-exist, and to assess whether introgression may lead to increased invasiveness in the species complex.  相似文献   

19.
Genetic distances (GDs) based on morphological characters, isozymes and storage proteins, and random amplified polymorphic DNAs (RAPD) were used to predict the performance and heterosis of crosses in oilseed rape (Brassica napus L.). Six male-sterile lines carrying the widely used Shaan2A cytoplasm were crossed with five restorer lines to produce 30 F1 hybrids. These 30 hybrids and their parents were evaluated for seven agronomically important traits and their mid-parent heterosis (MPH) at Yangling, Shaanxi province in Northwest China for 2 years. Genetic similarity among the parents based on 34 isozyme and seven protein markers was higher than that based on 136 RAPDs and/or 48 morphological markers. No significant correlation was detected among these three sets of data. Associations between the different estimates of GDs and F1 performance for some agronomic traits were significant, but not for seed yield. In order to enhance the predicting efficiency, we selected 114 significant markers and 43 favoring markers following statistical comparison of the mean values of the yield components between the heterozygous group (where the marker is present only in one parent of each hybrid) and the homozygous group (where the marker is either present or absent in both parents of each hybrid) of the 30 hybrids. Parental GD based on total polymorphic markers (GDtotal, indicating general heterozygosity), significant markers (GDsign, indicating specific heterozygosity) and favoring markers (GDfavor, indicating favoring-marker heterozygosity) were calculated. The correlation between GDfavor or GDsign and hybrid performance was higher than the correlation between GDtotal and hybrid performance. GDsign and GDfavor significantly correlated with plant height, seeds per silique and seed yield, but not with the MPH of the other six agronomic traits with the exception of plant height. The information obtained in this study on the genetic diversity of the parental lines does not appear to be reliable for predicting F1 yield and heterosis.  相似文献   

20.
Cytogenetic investigation of microsporogenesis in Agropyron sericeum, Hordeum jubatum, their spontaneous hybrid, Agrohordeum pilosilemma, its amphiploid, and the backcross of the amphiploid to A. sericeum, B1, elucidated the genome relationships of A. sericeum and H. jubatum. The tetraploid parental species share a partially homologous genome which affects the pairing relationships evidenced in their hybrids. The genome formulae assigned to these plants are: A. sericeum, A“A”BB; H. jubatum, AAA'A‘; Agrohordeum pilosilemma, AA'A“B; the amphiploid, AAA'A‘A”A“BB; and B1, AA'A”A“BB. Observed pairing configurations were compatible with the expected maximum pairing configurations predicted under the assumption of genetic control of pairing with dosage effects. This is interpreted as further support for the hypothesis that pairing in the hybrids of H. jubatum is controlled by the A genome, one dose of A allowing homeologous pairing and two doses of A promoting homeologous association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号