首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《植物生态学报》2018,42(8):806
翅果能够依靠风力进行传播, 可能是被子植物快速散布和物种分化的一个重要因素。狭义的翅果是指果皮延伸成翅且不开裂的干果; 广义的翅果则包括果皮、花被片或苞片形成果翅的所有果实。根据果翅形态及其生长方式的不同, 广义的翅果可分为单侧翅果、周位翅果(圆翅果与蝶翅果)、棱翅果、披针翅果、翼状萼翅果、叶状苞翅果6种类型, 其空中运动方式有自旋式(单侧翅果、翼状萼翅果)、波浪式(周位翅果、叶状苞翅果)、翻滚自旋式(周位翅果)、直升机式(披针翅果、翼状萼翅果)和滚筒式(棱翅果)。棱翅果与圆翅果在被子植物基部类群樟目就有发生, 并同时出现在单子叶植物和双子叶植物中, 可能是最早出现的翅果类型。翅果的演化过程呈现出果翅数量增加、果翅偏向单侧和果翅负荷(果实质量与果翅面积之比)降低的趋势, 以利于适应较小的风并增加传播距离。果翅除了促进果实与种子的风力传播外, 还具有物理防御、调节种子萌发和促进二次传播等作用。泛热带分布的金虎尾科有着极其丰富的翅果类型, 与其多次跨洋长距离扩散密切相关, 可以作为研究翅果适应与演化的一个模式类群。结合生态和演化-发育生物学方法, 研究不同类型翅果在适应风力传播方面的差异、萼片或苞片发育成翅的分子与遗传机制、翅果不同类型的演化历史及其对被子植物物种多样性的影响等是今后值得探讨的重要问题。  相似文献   

2.
翅果能够依靠风力进行传播, 可能是被子植物快速散布和物种分化的一个重要因素。狭义的翅果是指果皮延伸成翅且不开裂的干果; 广义的翅果则包括果皮、花被片或苞片形成果翅的所有果实。根据果翅形态及其生长方式的不同, 广义的翅果可分为单侧翅果、周位翅果(圆翅果与蝶翅果)、棱翅果、披针翅果、翼状萼翅果、叶状苞翅果6种类型, 其空中运动方式有自旋式(单侧翅果、翼状萼翅果)、波浪式(周位翅果、叶状苞翅果)、翻滚自旋式(周位翅果)、直升机式(披针翅果、翼状萼翅果)和滚筒式(棱翅果)。棱翅果与圆翅果在被子植物基部类群樟目就有发生, 并同时出现在单子叶植物和双子叶植物中, 可能是最早出现的翅果类型。翅果的演化过程呈现出果翅数量增加、果翅偏向单侧和果翅负荷(果实质量与果翅面积之比)降低的趋势, 以利于适应较小的风并增加传播距离。果翅除了促进果实与种子的风力传播外, 还具有物理防御、调节种子萌发和促进二次传播等作用。泛热带分布的金虎尾科有着极其丰富的翅果类型, 与其多次跨洋长距离扩散密切相关, 可以作为研究翅果适应与演化的一个模式类群。结合生态和演化-发育生物学方法, 研究不同类型翅果在适应风力传播方面的差异、萼片或苞片发育成翅的分子与遗传机制、翅果不同类型的演化历史及其对被子植物物种多样性的影响等是今后值得探讨的重要问题。  相似文献   

3.
The key selective pressure shaping the morphology of samaras is seen as enhancing primary wind-borne dispersal from the parent plant to the ground. However, the consequences of the samara wing of primarily wind-dispersed tree species for post-dispersal processes has not been well studied. We explored whether the presence of this wing in Acer pseudoplatanus either deters or promotes predation after dispersal, either by increasing the time and energy required to predate the seed or by increasing the seed's visibility to predators. We found that wing-removed fruits were preferred, suggesting that the presence of samaras makes seed handling more expensive for granivores. Further, we found that fewer seeds were consumed from treatments that contained the most winged seeds, thus there was no evidence of the samaras making seed finding easier for granivores. We conclude that the presence of the wing may offer an anti-predatory benefit as well as aiding primary dispersal.  相似文献   

4.
We studied intraspecific variation in samara morphology and flight behavior within and among parent trees of Acer saccharinum (silver maple), with a particular focus on the effect of samara shape. Samara mass, area, wing loading, and descent rate from a 4.5-m indoor balcony were measured for 50 undamaged mature samaras from each of six parents. We found significant differences among parental types for all morphological variables and descent rate. These differences yielded a 50% range in mean dispersal potential among the six parents. There was a strong linear correlation between descent rate and square root of wing loading when mean values were plotted for each of the six parental types. But there was considerable within-parent variation for all measured variables, including substantial nonallometric variation in wing loading caused in part by poor correlations between wing area and fruit weight. Parents also differed widely in the relationship between square root of wing loading and descent rate (linear r2 = 0.150-0.788), with one parental type showing no significant relationship. Fruits from the same parent with similar values of the square root of wing loading showed as much as a 75-100% difference in descent rate. The usefulness of mass : area indices such as wing loading is limited by its exclusion of aerodynamically important factors such as mass distribution and wing shape, which in our case caused the six parents to behave aerodynamically almost as if they were six separate species.  相似文献   

5.
Winged seeds, or samaras, are believed to promote the long‐distance dispersal and invasive potential of wind‐dispersed trees, but the full dispersive potential of these seeds has not been well characterised. Previous research on the ecology of winged seeds has largely focussed on the initial abscission and primary dispersal of the samara, despite it being known that the primary wind dispersal of samaras is often over short distances, with only rare escapes to longer distance dispersal. Secondary dispersal, or the movement of the seeds from the initial dispersal area to the site of germination, has been largely ignored despite offering a likely important mechanism for the dispersal of samaras to microhabitats suitable for establishment. Herein, we synthesise what is known on the predation and secondary dispersal of winged seeds by multiple dispersive vectors, highlighting gaps in knowledge and offering suggestions for future research. Both hydrochory and zoochory offer the chance for samaroid seeds to disperse over longer distances than anemochory alone, but the effects of the wing structure on these dispersal mechanisms have not been well characterised. Furthermore, although some studies have investigated secondary dispersal in samaroid species, such studies are scarce and only rarely track seeds from source to seedling. Future research must be directed to studying the secondary dispersal of samaras by various vectors, in order to elucidate fully the invasive and colonisation potential of samaroid trees.  相似文献   

6.
Strobe photographs were taken of over 200 spinning samaras from seven species of trees. These were used to measure the rate of descent, angular velocity, orientation, and other parameters of the samaras as they fell. These data were then used to compare the aerodynamic behavior of samaras, helicopters, and theoretical ideal rotors. Plotting morphological data for each samara against its rate of descent showed that this rate was highly correlated with the square root of the samara's wing loading (samara weight divided by wing-surface area). This plot demonstrated the existence of two distinct groups of samaras, distinguished by their morphology, spinning motion, and rate of descent. These results are of greatest use in characterizing local dispersal patterns.  相似文献   

7.
翅果的风媒传播是槭属植物的主要扩散方式之一,且与种子萌发有着密切关联,但具体机理一直还并不明确。以分布于长白山的9种槭树为对象,探讨翅果的形态特征,测定它们在空气中的垂直沉降速度、不同风速下的水平扩散距离以及在扩散距离上的种子萌发率,进而比较并分析翅果的形态性状与沉降速度、水平扩散距离的相关性以及萌发率在不同扩散距离上的差异性。结果表明:(1) 9种槭树的翅果长、宽和面积与沉降速度、水平扩散距离均呈负相关;尽管如此,翅果形态并不是风传播物种的最佳分类指标,而翅载力能较好地反应物种的风传播能力;(2)翅果垂直沉降速度和水平扩散距离间存在显著负相关,表明沉降速度越小,翅果在空气中停留的时间越长,水平方向上扩散距离越远,且强风有助于提高翅果的扩散能力;(3)沉降速度最慢的花楷槭在不同风速下的水平扩散距离均最远,而沉降速度最快的拧筋槭水平扩散距离最短;(4)种子萌发率随扩散距离的增加呈下降趋势。上述结果不仅为深入理解翅果的风力传播机制以及种子萌发对水平扩散距离的响应机制提供科学依据,还可为种群实生更新方面的理论研究提供参考。  相似文献   

8.
田旭平  韩有志 《生态学报》2018,38(4):1293-1300
多态型果实或种子的出现对植物种群的扩散具有重要的意义。绒毛白蜡(Fraxinus velutina)的果实具有二态型特征,主要表现在果翅数量上不同,分别定义为二翅型和三翅型果实,为了比较两类果实在风传扩散时的差异,研究了两类果实的形态、果翅结构和扩散距离及扩散时长。在大型封闭地下室内,以电扇在不同速度档位产生的气流作为风源,分别从2、1.5、1m处手动释放果实,对风速为0、4.6、6.5、7.3m/s时的果实扩散距离及扩散时长进行了比较;并在此基础上对果实的形态特征与扩散特征进行了线性相关分析。结果表明:在同一高度及相同风速下,三翅型果实的水平扩散距离都极显著的大于二翅型,但其相应的扩散时长都小于二翅型。在相同情况下,三翅型的果实沉降速度显著高于二翅型。两类果实随着释放高度的增加,其扩散距离和扩散时长都相应的增加;随着风速的升高,其扩散距离及扩散时长都相应的增加。三翅型果实质量显著高于二翅型,相反,三翅型果翅长与宽都显著小于二翅型。两种翅型的果翅细胞结构都一样,细胞内部都呈现气囊状,果翅表面沿纵轴方向有流线型的纵棱。通过直线相关分析发现,翅型是对扩散距离和扩散时长影响最显著的形态特征;与果实释放高度相比,风速是影响绒毛白蜡果实扩散距离与扩散时长最显著的环境因素。绒毛白蜡三翅型果实比二翅型果实传播的远,关键在于其具有三翅,三翅对阵风瞬间响应,使得沉降速度较二翅型高,可以在瞬时风的作用下,快速传播到较远的距离。三翅型与二翅型在扩散方式上的结合增强了绒毛白蜡的生存与定殖机会。  相似文献   

9.
It is widely recognized that colonists and competitors dominate early and late succession, respectively, with selected species having different colonizing and competitive abilities. However, it remains unknown whether colonizing and competitive ability can determine species abundance directly over succession. The data for five key functional traits were collected (photosynthesis rate, leaf turgor loss point, leaf proline content, seed mass, and seed germination rate), which are direct indicators of plant competitive and colonizing abilities including growth, drought and cold stress resistance, dispersal, and seed dormancy. Here, we tested the effects of colonizing and competitive abilities on species abundance, by employing a linear mixed‐effects model to examine the shifts in the relationship between species abundance and these five colonization and competition‐related traits in species‐rich subalpine secondary successional meadows (at 4, 6, 10, 13 years of age, and undisturbed, respectively) of the Qinghai–Tibetan Plateau. The abundant species at the early‐successional meadows tend to have high photosynthetic rate, high leaf proline content, low seed mass, and seed germination rate for having high colonizing ability, but low competitive ability. By contrast, late‐successional communities tend to be dominated by species with high competitive ability, but low colonizing ability, indicated by large seeds, high seed germination rate, low photosynthetic rate, and leaf proline content. The observed directional shifts in the relationships between traits (photosynthetic rate, leaf proline content, seed mass, and seed germination rate) and abundance with successional age, bring two new understandings of community assembly during succession of subalpine meadows in the Qinghai–Tibetan Plateau. First, it discloses that the differences in species abundance over succession can be directly attributed to differences in colonizing and competitive abilities of different species. Second, it expands the effects of multiple life historical differences including growth, resource competitive ability, cold stress resistance, dispersal, and seed germination strategy, represented by functional traits on community assembly along succession, that is, from the species to the community level.  相似文献   

10.
C. Houssard  J. Escarré 《Oecologia》1991,86(2):236-242
Summary The effects of seed size on growth, biomass allocation and competitive ability of Rumex acetosella plants grown either individually or in competition were studied in two populations (6 months and 15 years old respectively) sampled from a postcultivation successional gradient. For plants grown individually there were highly significant effects of seed weight on growth after 43 days, with a higher relative growth rate (RGR) observed for plants raised from heavier seeds. However at the end of the experiment, seedlings developed from lighter seeds had a RGR 2 times greater than those from heavier seeds. Final biomass of the two types was not significantly different after 73 days of growth. When plants were grown individually, there were only slight differences between populations, but when grown in monocultures of 4 plants per pot, plants from the old population had higher root and leaf biomass per pot whereas those from the young population had a higher reproductive effort per pot. This suggests that a trade-off between allocation to sexual and vegetative reproduction occurs over successional time. In mixtures of light and heavy seeds, plants from light seeds were shorter, had fewer leaves and lower biomass than plants from heavy seeds, which were also taller and produced more dry matter than plants grown from heavy seeds in monoculture. The significant effects of seed weight and population on biomass parameters persisted unit the end of the experiment. Seedlings from heavy seeds were strong competitors: those from the young population grew better in the presence of neighbors than in monoculture and those from the late successional population suppressed the more the growth of their partners. Seedlings from light seeds were subordinate competitors. These results suggest that seedlings from seeds of different sizes benefit from contrasting ecological conditions and that selection acts on reproductive output along successional gradients.  相似文献   

11.
Aims How seed dispersal distance is related to various factors is a major challenge for seed ecologists. However, there are different answers as to which factor is most important in determining wind dispersal distance. This study is to quantitatively describe the relationship between various factors and primary wind dispersal distance of winged diaspores.Methods The dispersal distances of five morphologies of winged diaspores in Zygophyllum xanthoxylum (Zygophyllaceae) were measured under controlled conditions in a wind tunnel. The explanatory power of environmental factor (i.e. wind speed), plant trait (i.e. release height) and diaspore attributes (i.e. wing loading (the ratio of diaspore mass to projected area), settlement-velocity, shape index (the variance of diaspore length, width and thickness)) to the variation in dispersal distance was assessed by releasing diaspores at varying wind speeds and release heights.Important findings Wind speed and seed release height were the strongest explanatory factors to dispersal distance, contributing 41.1% and 24.8% (P < 0.01) to total variation in dispersal distance, respectively. Wind speed accounted more for relatively light disc-shaped seeds than for relatively heavy spherical seeds. Wing loading, shape index and settlement-velocity explained 9.0% (P < 0.01), 1.4% (P < 0.01) and 0.9% (not significant) of the variation in dispersal distance, respectively. From disc-shaped to four-winged diaspores, relative contributions of wing loading and shape index decreased but contribution of settlement-velocity increased. The relative contributions of various factors to wind seed dispersal distance may change with the change in seed morphology.  相似文献   

12.
Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed‐limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right‐skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance‐limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter‐annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions.  相似文献   

13.
Aim  This study aims to assess the role of long-distance seed dispersal and topographic barriers in the post-glacial colonization of red maple ( Acer rubrum L.) using chloroplast DNA (cpDNA) variation, and to understand whether this explains the relatively higher northern diversity found in eastern North American tree species compared with that in Europe.
Location  North-eastern United States.
Methods  The distribution of intraspecific cpDNA variation in temperate tree populations has been used to identify aspects of post-glacial population spread, including topographic barriers to population expansion and spread by long-distance seed dispersal. We sequenced c.  370 cpDNA base pairs from 221 individuals in 100 populations throughout the north-eastern United States, and analysed spatial patterns of diversity and differentiation.
Results  Red maple has high genetic diversity near its northern range limit, but this diversity is not partitioned by topographic barriers, suggesting that the northern Appalachian Mountains were not a barrier to the colonization of red maple. We also found no evidence of the patchy genetic structure that has been associated with spread by rare long-distance seed dispersal in previous studies.
Main conclusions  Constraints on post-glacial colonization in eastern North America seem to have been less stringent than those in northern Europe, where bottlenecks arising from long-distance colonization and topographic barriers appear to have strongly reduced genetic diversity. In eastern North America, high northern genetic diversity may have been maintained by a combination of frequent long-distance dispersal, minor topographic obstacles and diffuse northern refugia near the ice sheet.  相似文献   

14.
云南金钱槭果实、种子形态分化研究   总被引:19,自引:0,他引:19  
对5个云南金钱槭(Dipteronia dyeriana Henry)天然居群的果实、种子形态进行研究.测量了果实和种子的长度、宽度、重量等12个表型性状指标.数据统计结果显示5个云南金钱槭居群按果实、种子大小进行排序为蒙自(MZ)>屏边(PB)>文山1(WSh1)>文山3(WSh3)>文山2(WSh2).表型性状在居群内和居群间均存在着一定程度的变异,其中居群间变异系数的平均值从0.064(果实整体形态,PL/PB)到0.197(种子重量,SW),相比之下果实整体形态最为稳定.居群间形态总体差异显著性配对t检验结果说明,多数居群间已产生较明显的形态分化.Ward聚类和相关分析结果都表明表型性状与生态因子、海拔高度之间存在着一定程度的相关性,多种生态因子的共同作用是导致果实、种子形态特征产生差异的主要原因.  相似文献   

15.
Ingle NM 《Oecologia》2003,134(2):251-261
In the moist Neotropics, vertebrate frugivores have a much greater role in the dispersal of forest and successional woody plants than wind, and bats rather than birds play the dominant role in dispersing early successional species. I investigated whether these patterns also occurred in a Philippine montane rainforest and adjacent successional vegetation. I also asked whether seed mass was related to probability of dispersal between habitats. A greater number of woody species and stems in the forest produced vertebrate-dispersed seeds than wind-dispersed seeds. Although input of forest seeds into the successional area was dominated by vertebrate-dispersed seeds in terms of species richness, wind-dispersed seeds landed in densities 15 times higher. Frugivorous birds dispersed more forest seeds and species into the successional area than bats, and more successional seeds and species into the forest. As expected, seed input declined with distance from source habitat. Low input of forest seeds into the successional area at the farthest distance sampled, 40 m from forest edge, particularly for vertebrate-dispersed seeds, suggests very limited dispersal out of forest even into a habitat in which woody successional vegetation provides perches and fruit resources. For species of vertebrate-dispersed successional seeds, probability of dispersal into forest declined significantly with seed mass.  相似文献   

16.
Generation of Spatial Patterns in Boreal Forest Landscapes   总被引:2,自引:0,他引:2  
Boreal forests are composed of a few plant species with contrasting traits with respect to ecosystem functioning and spatial patterning. Early successional deciduous species, such as birch and aspen, disperse seeds widely, do not tolerate low light and nitrogen availabilities, have rapidly decaying litter, and are highly preferred by herbivores. These later succeed to conifers, such as spruce and fir, which disperse seeds locally, tolerate low light levels and low nitrogen availability, have litter that decays slowly, and are unpalatable to most mammalian herbivores. Although there are also early successional conifers, such as jack pine and Scots pine, the aspen-birch-spruce-fir successional sequence is the most common over much of North America, and (without fir) in Fennoscandia and Siberia. The course of succession in these forests is controlled partly by seed dispersal and selective foraging by mammalian herbivores. Both of these processes are spatially dynamic, but little is known about how their spatial dynamics may affect ecosystem processes, such as nitrogen cycling or productivity. We present spatially explicit models that demonstrate the following: (a) Spatially explicit seed dispersal results in more clumped distribution of tree species and persistence of greater paper birch biomass than uniform seed rain across the landscape. Such results are consistent with current spatially explicit population models of dispersal and coexistence. (b) With localized seed dispersal, the concentrations of available soil nitrogen are distributed in larger patches with sharp transitions from low to high nitrogen availability near patch edges. In contrast, with a uniform seed rain, the distribution of soil nitrogen availability was more uniform and “hotspots” were more localized. Thus, the spatial pattern of an ecosystem process (nitrogen cycling) is determined by seed dispersal and competition for light among competing populations. (c) A dispersing herbivore, such as moose, that selectively forages on early successional deciduous species with high quality litter, such as aspen or birch, and discriminates against late successional conifers, such as spruce or fir, imposes higher-order repeated patterns of plant species and biomass distribution on the landscape. Thus, seed dispersal and herbivore foraging correlate properties in adjacent patches but in different ways, and different spatial patterns emerge. Other processes, such as insect outbreaks, fire, and water flow, also may correlate properties between adjacent patches and result in additional patterns. Received 8 February 1999; accepted 28 May 1999.  相似文献   

17.
Dispersal is a key process in plant invasions and is strongly related to diaspore morphology. Often, dispersal comprises more than one step, and morphologies adapted to a primary dispersal mechanism can aid or detract from a secondary one. The aim of this work was to assess the relationship between primary wind dispersal and secondary water dispersal in Ailanthus altissima, an invasive tree species. Wind and water dispersal potential and their association with the morphological characteristics of samaras were assessed under controlled conditions to ensure the repeatability of the measurements. We found a direct positive relationship between primary wind and secondary water dispersal in A. altissima. The main morphological characteristics of the samara that affected the success of the two types of dispersal were side perimeter and mass. However, a possibility of dispersal specialisation exists, as one morphological characteristic (samara width) affects wind dispersal negatively but water dispersal positively, and dispersal potential and samara morphology have been shown to differ across individuals.  相似文献   

18.
Changes in species composition during succession are driven by biotic and abiotic factors leading to a multitude of niches occupied by distinct species. Gradient analyses of plant communities provide opportunities to approximate the niche position of species along a successional gradient. Several plant traits have been used to explain mechanisms governing successional sequences, but generalising changes in species traits during primary succession is still controversial. This study examined whether the seed mass and the optimum temperature for germination could explain the niche position of several glacier foreland species along a primary successional gradient in the Austrian Central Alps. We hypothesised that pioneer species should possess lighter seeds and a lower optimum temperature for germination than late successional species. We found significant differences in the seed mass between species, but the seed mass did not correspond with the assigned niche position on the successional gradient. Germination responses to temperature also differed significantly between species. Pioneer species performed better at lower temperatures than late successional species, suggesting that the optimum temperature for germination is a driver of niche separation. We discuss the interactions between seed traits and environmental conditions along the primary successional gradient emphasising the importance of temperature requirements for the germination. Differences in the regeneration characteristics are a major cue governing species turnover in glacier foreland succession.  相似文献   

19.
Seed morphological and wind dispersed characteristics of Pinus yunnanensis and Keteleeria evelyniana were compared in this study to clarify the relationship among seed morphological, dispersal characteristics and wind dispersal ability. The results showed that: 1)Seed wing loading had the greatest effect on the seed settlement velocity, but the effect of seed shape(the ratio of seed wing length to width) on it was unobvious. Seed morphological and dispersal characteristics of two species slightly influenced the horizontal dispersal distance. 2)Seed morphological characteristics(weight, length, width and seed wing area) of Pyunnanensis were significantly lower than Kevelyniana’s. 3) The ratio of seed wing length to width of Pyunnanensis was greater, and had less seed wing loading than Kevelyniana, the seed settlement velocity of Pyunnanensis (773cm·s-1) was lower than Kevelyniana’s (1169cm·s-1). Meanwhile, the seed horizontal dispersal distance(075m) under same wind speed was further than Kevelyniana’s (071m). The present study indicated that wind dispersal ability of Pyunnanensis’ seed was stronger. The research results provided more knowledge to understand seed wind dispersal mechanism and seed adaptation strategies in term of evolution and ecology.  相似文献   

20.
N. Greig 《Oecologia》1993,93(3):412-420
Absolute number of seeds lost to predispersal seed predators and proportion of total seeds lost per infructescence were compared among five Costa Rican Piper species of different annual fecundities. Mean seed number and mean seed size in the five species were negatively correlated. The impact of predation on these species was inversely related to the number of seeds they produced. The two early successional species had very high fecundities, a combination of many seeds per infructescence, many infructescences per plant, and, in one species, year-round reproduction. Although seed predators destroyed as many or more seeds of these early successional species than they did of the less fecund, late successional species, this loss accounted for a relatively minor proportion (9 and 12%) of the seeds of the early successional species. In contrast, late successional species produced fewer, larger seeds in a smaller number of infructescences and were not continually in fruit. One of these species, which produced intermediate numbers of intermediately sized seeds, lost 30% of the seeds in each infructescence on average. Seed predators destroyed a larger proportion (65 and 76%) of the seeds per infructescence in the two species with fewest seeds per infructescence. High levels of insect damage in these late successional species caused many of their infructescences to abort prematurely. Taken together these factors resulted in annual fecundities several orders of magnitude smaller in shade-tolerant Piper species than the annual fecundities of shade-intolerant, early successional species. Seedlings of the two early successional species were common in large gaps and other sunny clearings and seedlings of the species with 30% seed loss were occasional, whereas no seedlings were seen of the two species with the highest proportional seed loss, suggesting that seed predation on the latter species may limit seedling recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号