首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatomical observations were made on 1-, 2-, and 3-yr-old plants of Yucca whipplei Torr, ssp. percursa Haines grown from seed collected from a single parent in Refugio Canyon, Santa Barbara, California. The primary body of the vegetative stem consists of cortex and central cylinder with a central pith. Parenchyma cells in the ground tissue are arranged in anticlinal cell files continuous from beneath the leaf bases, through the cortex and central cylinder to the pith. Individual vascular bundles in the primary body have a collateral arrangement of xylem and phloem. The parenchyma cells of the ground tissue of the secondary body are also arranged in files continuous with those of the primary parenchyma. Secondary vascular bundles have an amphivasal arrangement and an undulating path with frequent anastomoses. Primary and secondary vascular bundles are longitudinally continuous. The primary thickening meristem (PTM) is longitudinally continuous with the secondary thickening meristem (STM). Axillary buds initiated during primary growth were observed in the leaf axils. The STM becomes more active prior to and during root initiation. Layers of secondary vascular bundles are associated with root formation.  相似文献   

2.
The pith parenchyma in tomato ( Lycopersicum esculentum ) stems was found to be disrupted in response to water stress (stem pithiness). The process of the degradation starts at the upper part of the stem and proceeds downwards as the stress is prolonged. The damage to the stem tissue was found to be irreversible upon rehydration of the stressed plants. Scanning electron microscopy revealed that the protoplast of the affected cells is disrupted first, followed by degradation of the cell wall.
Application of abscisic acid (ABA) induced pithiness in non-stressed plants and also enhanced the effect of a short period of dehydration. Kinetin, although causing severe wilting, did not induce pithiness. However, when given after a short period of water stress or within the period of stress, kinetin enhanced pithiness development.
In the course of the stress, ABA levels in the upper part of the stem and in the young leaves were higher than the levels found in the lower parts of the plant shoot. The increase in ABA levels was detected before any sign of pithiness.
It is suggested that ABA might be the triggering agent of the cellular degradation process initiated by water stress.  相似文献   

3.
Comparative anatomical studies of the mature stems of two species each of Trichipteris and Cyathea (Cyatheaceae) are described. The outermost boundary of the stem is typically a two-layered hypodermis. Mucilage-sac cells are randomly distributed in all parenchymatous areas of the stem and form articulated laticifer systems. Localized areas of sclerenchyma tissue occur in the cortex of both T. microphylla and C. suprastrigosa. All species studied possess medullary bundles, whereas cortical bundles are found only in T. trichiata. Accessory bundles occasionally are associated with indentations in the internal stelar sheath of T. trichiata. The stelar pattern in each genus is a dictyostele and consists of individual meristeles. Distinctive cubical cells typically occur wherever sclerenchymatous fibers and parenchyma cells abut one another. Tangential cells occur within the primary phloem of each meristele, and occasionally within the larger accessory bundles. The primary xylem of the adventitious roots is typically diarch, although triarch and tetrarch xylem may occur. Leaf traces and petiole strands are similar anatomically to the accessory bundles. Based upon this study Trichipteris and Cyathea show striking anatomical similarities, and appear to be closely-related taxa.  相似文献   

4.
Ice formation and tissue response in apple twigs   总被引:7,自引:0,他引:7  
Abstract. The response of apple twig tissue to a freezing stress was examined using a combination of low temperature scanning electron microscopy and freeze substitution techniques. Bark and wood tissues responded differently. In the bark, large extracellular ice crystals were observed in the cortex. The adjacent cortical cells collapsed and a large reduction in cell volume was observed. The extent of cell collapse throughout the bark was not uniform. Cells in the periderm, phloem and cambium exhibited little change in cell volume compared to cortical cells. Large extracellular ice crystals were not observed in the xylem or pith tissues. The xylem ray parenchyma and pith cells did not collapse in response to a freezing stress, but retained their original shape. The pattern of ice formation and cell response was not observed to change with season or the level of cold acclimation. This study supported the concept that bark and xylem tissues exhibit contrasting freezing behaviour. The observations were consistent with the idea that water in bark freezes extracellularly while water in xylem ray parenchyma and pith cells may supercool to temperatures approaching –40 °C prior to freezing intracellularly.  相似文献   

5.
Plant water content is a simple and promising parameter for monitoring drought-driven plant mortality risk. However, critical water content thresholds leading to cell damage and plant failure are still unknown. Moreover, it is unclear whether whole-plant or a specific organ water content is the most reliable indicator of mortality risk. We assessed differences in dehydration thresholds in leaf, stem and root samples, hampering the organ-specific rehydration capacity and increasing the mortality risk. We also tested eventual differences between a fast experimental dehydration of uprooted plants, compared to long-term water stress induced by withholding irrigation in potted plants. We investigated three species with different growth forms and leaf habits i.e., Helianthus annuus (herbaceous), Populus nigra (deciduous tree) and Quercus ilex (evergreen tree). Results obtained by the two dehydration treatments largely overlapped, thus validating bench dehydration as a fast but reliable method to assess species-specific critical water content thresholds. Regardless of the organ considered, a relative water content value of 60% induced significant cell membrane damage and loss of rehydration capacity, thus leading to irreversible plant failure and death.  相似文献   

6.
The vascular system in the stems of Nymphaea odorata and N. mexicana subgenus Castalia, and N. blanda subgenus Hydrocallis consists of continuing axial stem bundles with eight being the usual number. The stem bundles are concentric and xylem maturation is mesarch. Xylem elements consist of tracheids with spirally or weakly reticulated secondary wall thickenings. The phloem is made up of companion cells and short sieve tube members with simple sieve plates that are nearly transverse. At the node each leaf is supplied with two lateral leaf traces and a median leaf trace. A root trace is also present and supplies a series of adventitious roots borne on the leaf base. Flowers and vegetative buds develop directly from the apical meristem and occupy leaf sites in a single genetic spiral. Each flower or vegetative bud is related to a leaf through specific spatial and vascular association. The related leaf is separated from the related flower by three members of the genetic spiral and occupies an adjacent orthostichy. Vascular tissue for the related flower arises from the inner surfaces of the four stem bundles supplying leaf traces to the related leaf and extends through the pith to the flower or vegetative bud via a peduncle fusion bundle. The vascular system organization in the investigated species of Castalia and Hydrocallis is not typically monocotyledonous or dicotyledonous, nor can it be considered transitional between them. The ontogeny of the vascular system is similar to typical dicotyledons and the investigated species of Nymphaea can, therefore, be considered to represent highly specialized and modified dicotyledons.  相似文献   

7.
Myrsine floridana produces all of its vegetative branches, other than those resulting from pruning or damage, by syllepsis, i.e. by the continuous development of an axillary meristem into a branch without an intervening stage of rest. These sylleptic branches, produced in series, have long and conspicuous hypopodia, broad pith connections with the parent axis, and expanded prophylls. Bud dormancy may be imposed when an axillary meristem is in the axil of the sixth or seventh youngest leaf of the parent shoot. Such axillary meristems may remain at the bud stage with only two pairs of scalelike leaves but these may later give rise to inflorescences or proleptic branches. Proleptic branches lack hypopodia, have narrow piths at their bases, and a series of leaves transitional from the original prophylls to normal foliage leaves within about ten leaves. Myrsine floridana has cortical bundles in the stem, related to the formation of minor lateral leaf traces. The hypopodia of sylleptic branches, since they are leafless, do not have cortical bundles.  相似文献   

8.
Movement of IAA-C14 and 2,4-D-C14 through cylinders of known size and histology was compared using liquid scintillation counting. Both auxins showed strongly polar movement, even through pith parenchyma cut from Coleus internode #5, the youngest internode to have ceased elongation. The polar movement was correlated with sizable elongation of the excised cylinders. Velocities of basipetal movement for a given auxin, as determined by the intercept method, showed small or negligible differences between pith and “corner” cylinders. (Corner cylinders comprised mostly vascular tissue, plus some cortical, pith, and epidermal cells.) For IAA, basipetal velocities ranged from 2.1 to 3.3 mm per hr; for 2,4-D, they were 0.6–0.8. For both auxins there was much more net loss into corner than into pith cylinders, a difference associated with the fact that corner cylinders showed 10 times as many cells in transection. More 2,4-D moved basipetally through corner than through pith cylinders and the reverse was true of IAA. By chromatographic evidence, all the radioactivity in the basal receiving blocks was still associated with the auxin molecules.  相似文献   

9.
Eccentric secondary growth is described and illustrated in detail for the first time in horizontal stems of Cordyline, Dracaena, Yucca and Beaucarnea (= Nolina) with up to 13 times more secondary tissues on the lower side than on the upper side. In Cordyline the secondary tissues on the lower side are rhizome-like in having less lignification of ground parenchyma and more diffuse and smaller secondary bundles than in the vertical stem. In Cordyline, Yucca, Beaucarnea, and D. reflexa the ground parenchyma cells are larger on the lower side. The vascular bundles are significantly larger on the lower sides of Beaucarnea and D. reflexa and are smaller on the lower side of D. fragrans. The occurrence of growth rings and eccentric growth is related to changes in cambial activity. There is close correspondence between enhanced cambial activity and high auxin levels on the lower side which have been reported elsewhere. However, there is no evidence of reaction wood tracheids on either the upper or lower sides.  相似文献   

10.
Medullary bundles are absent from the pith of the leafy, relictual cacti (genus Pereskia) but are present in most members of subfamily Cactoideae. They are absent only from tribes Hylocereeae, Rhipsalideae, and some members of Cacteae and Notocacteae. Presence of medullary bundles tends to be correlated with presence of a broad pith, but exceptions occur. Most medullary bundles are collateral, and in all genera phloem is produced and accumulates throughout the lifetime of the bundle. Xylem definitely accumulates as medullary bundles age in some groups, but it definitely does not accumulate in others, being produced only while the bundle is young. Pith can be broad (up to 75 mm in diameter), can constitute half the shoot volume, and is long-lived, remaining alive as long as the shoot is alive. Medullary bundles appear to be adaptive in allowing this large pith to be used for storage of water and starch. Medullary bundles have fewer, narrower tracheary elements than does the stele xylem in the same region; medullary bundles probably could not carry out significant longdistance transport if a major part of the stele becomes damaged.  相似文献   

11.
Guayule (Parthenium argentatum Gray) contains rubber in the parenchymatous cells of stems and roots. Stem anatomy of P. argentatum is described along with that of P. incanum H.B.K. (mariola). Anatomy of these species differs significantly. Phloem rays in both species increase in width by cell division and expansion; however, the increase observed in mariola is less as compared to that in guayule. Axial xylem parenchyma in guayule is generally a two-cell strand as compared to the fusiform axial xylem parenchyma observed in mariola. Vascular ray cells and cells of the pith region of guayule are parenchymatous, whereas those of mariola are sclerenchymatous. As a result of introgression between guayule and mariola, three forms of guayule exist in the native stands of Mexico. Morphological differences between these guayule plants have been described previously. The stem anatomy of these three groups of plants differ importantly. Group I guayule plants, least introgressed by mariola, have taller rays with the cells of pith region and vascular rays parenchymatous. Group III plants, highly introgressed by mariola, have a few to many cells of vascular rays and pith with lignified secondary walls and shorter rays. Many of the anatomical characteristics of group II plants, somewhat introgressed by mariola, are intermediate between group I and III plants.  相似文献   

12.
Sieve tubes in metaphloem of palm stems function throughout the life of the plant and merit close investigation. A stem of Sabal palmetto estimated to be 50 years old was sampled extensively. Variation in length of sieve-tube elements throughout this stem was measured and is discussed. In the metaphloem of individual vascular bundles companion cells are not sharply differentiated from other phloem parenchyma cells. Definitive callose deposits and slime are normally absent from mature sieve tubes, even in fixed material. Otherwise no conspicuous structural features which might account for the longevity of sieve tubes can be discerned. Occlusion of phloem strands after leaf fall is initially by callose deposition on sieve plates followed immediately by tylosoid formation. Similar sampling of Cocos nucifera, Washingtonia robusta and to a lesser extent Archontophoenix alexandrae confirmed these results except for quantitative differences.  相似文献   

13.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

14.
S. Lachaud  J. L. Bonnemain 《Planta》1984,161(3):207-215
Branches were cut from young beeches (Fagus sylvatica L.) at various stages of the annual cycle and [3H]indole-3-acetic acid (0.35 nmol) was applied to the whole surface of the apical section of each branch, just below the apical bud. The labelled pulse (moving auxin) and the following weakly radioactive zone (auxin and metabolites retained by the tissues) were localized by counting: microautoradiographss were made using cross sections from these two regions. During the second fortnight of April, auxin was transported by nearly all the cells of the young primary shoot, but the label was more concentrated in the vascular bundles. Auxin transport became the more localized: the cortical parenchyma appeared to lose its ability to transport the hormone (end of April), followed in turn by the pith parenchyma (May). Polar auxin movement at that time was limited to the outer part of the bundle (cambial zone and phloem) and to the inner part (protoxylem parenchyma). Later protoxylem parenchyma ceased to carry auxin. During the whole period of cambial activity, auxin was transported and retained mainly by the cambial zone and its recent derivatives. In September, before the onset of dormancy, and in February, at the end of the resting period, the transport pathways and retention sites for auxin were mainly in the phloem, where sieve tubes often completely lacked radiolabel. When cambial reactivation occurred in the one-year shoot, auxin was mainly carried and retained again in the cambial zone and differentiating derivatives.Abbreviation IAA indole-3-acetic acid  相似文献   

15.
Pectic substances are a major component of cell walls in vegetable plants and have an important influence on plant food texture. Cauliflower (Brassica oleracea L. var. botrytis) stem sections at different regions of the mature plant stem have been monitored for tissue-related changes in the native pectic polysaccharides. Chemical analysis detected appreciable differences in the degree of methyl-esterification (ME) of pectic polysaccharides. About 65% of galacturonic acid (GalpA) residues were methyl-esterified in floret tissues. Relative ME showed a basipetal decrease, from 94% in the upper stem to 51% in the lower-stem vascular tissues. The decrease was not related to a basipetal increase in glucuronic acid (GlcpA) residues. The monoclonal antibodies, JIM 5 and JIM 7, produced distinct labelling patterns for the relatively low-methyl-esterified and high-methyl-esterified pectin epitopes, respectively. Labelling was related to cell type and tissue location in the stem. Floret cell walls contained epitopes for both JIM 5 and JIM 7 throughout the wall. Stem vascular tissues labelled more strongly with JIM 5. Whereas pith parenchyma in the upper stem labelled more strongly with JIM 7, in the lower-stem pith parenchyma, JIM 5 labelling predominated. Localization of pectic polysaccharide epitopes in cell walls provides an insight into how structural modifications might relate to the textural and nutritional properties of cell walls. Received: 16 August 1997 / Accepted: 20 December 1997  相似文献   

16.
17.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

18.
运用石蜡切片法和荧光显微镜观察法研究了3个不同接骨草(Sambucus chinensis Lindl.)居群营养器官的显微结构及其绿原酸的分布规律。结果表明:(1)接骨草地上茎厚角组织明显,髓部由大小不等的两类薄壁细胞组成,且有单宁细胞分布;地下根状茎厚角组织细胞小,髓部薄壁细胞大小差异不明显,皮层及髓中有油细胞分布。(2)叶片为异面叶,栅栏组织细胞为短柱状,油细胞不明显。(3)绿原酸分布在根状茎皮层部分细胞、茎厚角组织部分细胞及叶片的海绵组织中,以海绵组织中含量最高。研究认为,髓部薄壁细胞大小的差异可作为接骨草的一个鉴别特征;荧光显微镜观察法可迅速准确显示绿原酸的分布;在所研究的3个接骨草居群中,怀化居群的绿原酸含量最高,若以绿原酸为有效成分来采收接骨草,可以只采收叶。  相似文献   

19.
李永刚  张元明 《生态学报》2018,38(23):8408-8416
苔藓结皮作为生物土壤结皮演替的最高阶段和生物量的最主要贡献者,具有很强的环境适应性,对维持荒漠地表稳定和改善微环境具有重要作用。非结构性碳水化合物是植物重要的组成部分,能够抵御环境胁迫对植物造成的损伤。目前,荒漠藓类植物非结构碳水化合物对干旱的响应机制尚不清楚。选取古尔班通古特沙漠南缘和腹地苔藓结皮中优势藓类植物齿肋赤藓(Syntrichia caninervis)为研究对象,对其在复水后脱水过程中非结构性碳水化合物含量变化特征进行了分析。结果表明:植株含水量在脱水24 h内下降趋势显著,此后趋于稳定。可溶性总糖、蔗糖、果糖、淀粉含量在脱水1h内显著下降。可溶性总糖、蔗糖、果糖、淀粉含量在脱水2—16 h没有显著的变化。但16—24 h可溶性总糖、蔗糖、果糖、淀粉含量出现显著增加,脱水24—48 h,腹地齿肋赤藓可溶性总糖、蔗糖、果糖、淀粉含量缓慢下降到复水前水平,而南缘可溶性总糖、蔗糖、果糖含量低于复水前水平。复水前不同地区齿肋赤藓非结构性碳水化合物含量存在显著性差异,脱水结束后两个地区齿肋赤藓非结构碳水化合物含量无显著差异。结果说明齿肋赤藓在不同地区其非结构性碳水化合物含量不同,在同一脱复水过程中不同地区齿肋赤藓非结构性碳水化合物含量表现出不同的变化趋势,主要原因是可溶性糖含量对脱水过程中水分胁迫的响应不同。齿肋赤藓脱水过程中非结构性碳水化合物的研究,有助于抗旱非维管植物在干旱环境中从降雨湿润进入干旱过程的适应策略研究。  相似文献   

20.
The effects of dehydration/rehydration on two strains of Saccharomyces cerevisiae: S600, a metabolically engineered xylose-utilising strain, and H158, the non-xylose-utilising host strain; and on the naturally xylose-utilising yeast Pachysolen tannophilus CBS 4044, were compared after glucose and xylose utilisation respectively. The yeast strains differed in their ability to excrete and accumulate intracellular xylitol. A high intracellular xylitol content before and after dehydration coincided with a higher viability after a dehydration/rehydration cycle. The intracellular trehalose content increased during dehydration in all three yeast strains, but this did not correspond to enhanced cell viability after dehydration/rehydration. The results are discussed in relation to the ability of xylitol and trehalose to structure water. Received: 9 July 1996 / Received revision: 29 October 1996 / Accepted: 2 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号