首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses in net photosynthesis (A), stomatal conductance to water vapor (g), and leaf xylem pressure potential (ψ) were measured in the deciduous tree Quercus macrocarpa during alternating periods of sun (photosynthetic photon flux, PPF > 1,500 μmol m-2 sec-1) and shade (ca. 350 μmol m-2 sec-1 simulating cloud cover). Measurements were made on trees growing at the gallery forest-prairie edge on the Konza Prairie Research Natural Area in northeast Kansas. The region is near the westernmost extension of the range of Q. macrocarpa where this species experiences significant seasonal water stress (minimum ψ < -2.9 MPa). Quercus macrocarpa was chosen for study because it has relatively high A (15 μmol m-2 sec-1) and g (300 mmol m-2 sec-1) in contrast to the deciduous and evergreen subalpine trees previously studied. Both trees and large saplings of Q. macrocarpa responded to alternating several minute periods of sun and shade with relatively rapid changes in A and g. Reductions in g (110 mmol m-2 sec-1) during shade periods lowered transpirational water losses (E) by 13% (and reduced A by 5%) relative to estimates of A and E made assuming g remained constant. Partial stomatal closure during shade was correlated with moderate enhancement in ψ (0.31 MPa) in Q. macrocarpa. However, greater increases in ψ were measured in adjacent prairie grasses exposed to similar periods of shade (0.72 MPa in Andropogon gerardii, 0.61 MPa in Sorghastrum nutans). Reduced variability in ψ in tree growth forms may reflect greater buffering of water relations associated with the large size of trees, the amount of tissue devoted to water storage, and differences in hydraulic resistance relative to herbs. Nonetheless, the gas exchange and water relations responses in Q. macrocarpa were much more similar to those previously measured in herbaceous subalpine and grassland species than to those documented for subalpine trees. Thus, rapid gas exchange responses to variable PPF may also occur in tree growth forms.  相似文献   

2.
The net photosynthetic (A), stomatal conductance to water vapor (g), water use efficiency (WUE = A/transpiration), and leaf water potential (ψ) responses of cultivated oats (A vena saliva) were determined under an experimental regime of alternating full sun (photosynthetic photon flux density, PPFD > 1,700 μmol · m-2-sec-1) and shade (300-400 μmol · m-2 · sec-1 PPFD). Less extensive measurements were made on winter wheat (Triticum aestivum) to test the generality of crop species' responses. The rates of stomatal opening/closing after changes in PPFD in A vena and Triticum were compared with previously determined rates for native grasses and forbs to assess how domestication might have altered stomatal dynamics. Characteristics of Avena under alternating sun and shade were 1) rapid fluctuations in A between full sun (~27 μmol · m-2 · sec-1) and shade rates (~12 -13 μmol · m 2sec 1); 2) slower changes in g, causing progressive stomatal closure during the measurement sequence and possible stomatal limitation of A; 3) no change in leaf ψ; and 4) a net reduction in WUE. Triticum had similar sun/shade A, g, and WUE dynamics, except that Triticum stomata returned to full-sun g between shade periods. The rates of change of g in Avena and Triticum were lower than for some desert and subalpine native species, but were similar to rates for species in adjoining native habitat. The basic stomatal dynamics of Avena and Triticum may typify many cultivated C, species, and these data indicate that crop stomatal behavior has not diverged significantly from that of native species.  相似文献   

3.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

4.
Summary Different response patterns in net photosynthesis (A) leaf conductance (g) and water use efficiency (WUE= a/transpiration) in three subalpine plants occurred during experimental sun/shade transitions that simulated natural cloudcover. In Frasera speciosa Dougl., a large-leaved herb characteristic of open sites, g was relatively insensitive to transitions in irradiance and variations in A. However, large decreases in leaf temperature resulted in reduced transpiration during shade intervals and relatively constant WUE throughout the experimental sun/shade regime. In the understory herb, Arnica cordifolia Hook., patterns of A and g were similar during sun/shade transitions, but WUE was substantially reduced compared to steady-state levels. A third, somewhat intermediate pattern of A, g, and WUE was found in Artemisia tridentata L., an open site shrub. Higher intercellular CO2 values in A. tridentata suggested that internal, cellular limitations to A were high relative to stomatal limitations in this shrub when compared to the herbaceous species.  相似文献   

5.
《Annals of botany》1996,77(6):605-613
To evaluate the effect of drought and vapour pressure deficit (VPD) on stomatal behaviour and gas exchange parameters, young kiwifruit vines (Actinidia deliciosavar.deliciosacv. Hayward) were exposed to alternating periods of drought and drought-relief over two growing seasons. Vines were grown either in the field or in containers. Stomatal conductance of fully-expanded leaves rapidly decreased as pre-dawn leaf water potential was reduced below a threshold value of -0.3MPa. Stomatal conductance reached minimum values of 10–20mmol m-2s-1. Transpiration rate was similarly sensitive to changes in leaf water status, whereas more severe drought levels were necessary to affect photosynthesis significantly. Net daily carbon gains were estimated at 4.7 and 2.7gm-2for irrigated and droughted vines, respectively. Gas exchange parameters recovered to values of irrigated vines within a few hours after relief of stress. Rate of recovery depended on the level of stress reached during the previous drought period. There was a steady decline in stomatal conductance when VPD was increased from 0.8 to 2.5kPa in both irrigated and droughted vines. The VPD at which stomatal conductance reached 50% of maximum values was 2.1–2.2kPa for both treatments. We conclude that stomata were highly sensitive to changes in soil water status and that midday depression of photosynthesis measured in kiwifruit vines was related to water deficits arising in the leaf because of both transpirational losses and to the direct effect of increasing VPD.  相似文献   

6.
Physiological parameters of mycorrhizal symbiosis by Helianthemum almeriense and Terfezia claveryi in orchards were characterized under water deficit conditions. Our orchard included 40 mycorrhizal and 40 nonmycorrhizal plants. Only mycorrhizal plants survived at the beginning of the experimental period, indicating dependency on fungal symbionts in roots for survival. Drought stress significantly affected the mycorrhizal colonization percentage which was 70% in nonirrigated mycorrhizal and 48% in irrigated mycorrhizal plants. No significant differences in plant growth were observed between nonirrigated and irrigated mycorrhizal plants before and after drought stress. Stomatal conductance was more sensitive to water stress than shoot water potential. It decreased more than two-fold under drought-stress compared to control mycorrhizal plants under irrigation/light saturating conditions, indicating important stomatal closure with water deficit. Plants’ water use efficiency improved with drought with stomatal conductance values below 0.3 mol?m?2?s?1. The ability to maintain open stomata and photosynthesis under drought increased carbon supply for growth, and ascocarp fruiting which requires current photosynthates. Basically, H. almeriense shows a conservative water use strategy based mainly on avoiding drought stress by reducing stomatal conductance as soil water potential decreases and atmospheric conditions dry. The results show that mycorrhizal H. almeriense plants maintain good physiological parameters with low soil matric potentials, thus making them an alternative agricultural crop in arid/semi-arid areas.  相似文献   

7.
Kaufmann MR 《Plant physiology》1982,69(5):1018-1022
For an entire season of stomatal activity, leaf or needle conductance was observed on four species, each in a different genus: Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa [Hook.] Nutt.), lodgepole pine (Pinus contorta var. latifolia Engelm.), and aspen (Populus tremuloides Michx.). Conductance in the natural environment was described for all species by photosynthetic photon flux density (PPFD) and absolute humidity difference from leaf to air (DAH), as follows: Conductance = b1 (√PPFD/√DAH) + b2 (√PPFD/DAH) + b3 (√PPFD/DAH2). The only data not fitting this relationship were conifer data collected after freezing nights or aspen data collected during a short period in August when water stress occurred. In both cases, leaf conductance was reduced. It is proposed that PPFD and DAH are primary factors controlling stomatal function for plants growing in their native range; secondary factors, such as temperature and water stress, affect conductance intermittently, except when plants are growing outside their normal environmental conditions.  相似文献   

8.
Vats  S.K.  Pandey  S.  Nagar  P.K. 《Photosynthetica》2002,40(4):625-628
Net photosynthetic rate (P N) of Valeriana jatamansi plants, grown under nylon net shade or under different tree canopies, was saturated with photons at 1 000 mol m–2 s–1 photosynthetic photon-flux-density (PPFD), whereas open-grown plants were able to photosynthesise even at higher PPFD, e.g. of 2 000 mol m–2 s–1. Plants grown under net shade had higher total chlorophyll (Chl) content per unit area of leaf surface. However, Chl a/b ratio was maximal in open-grown plants, but remained unchanged in plants grown in nylon net shade and under different tree canopies. Sun-grown plants had thicker leaves (higher leaf mass per leaf area unit), higher wax content, and higher P N than shade grown plants. Thus V. jatamansi is able to acclimate to high PPFD and therefore this Himalayan species may be cultivated in open habitat to meet the ever-increasing industrial demand.  相似文献   

9.
We compared the responses of sun and shade acclimated saplings of Picea abies and Pinus cembra to excess photosynthetic photon flux density (PPFD) equivalently exceeding the level for saturating net photosynthetic rate (P N). Exposure for 2 h up to 2000 μmol(photon) m−2 s−1 did not affect radiant energy saturated P N. Photoinhibition of photosynthesis was indicated by a small (10 %) reduction of the potential efficiency of photosystem 2 as derived from measurements of chlorophyll fluorescence (FV/FM). However, the extent of FV/FM reduction and half-time for recovery were similar in sun and shade acclimated saplings of both species. Furthermore, the effect on FV/FM was not stronger when the plants were exposed to excess PPFD at 5 °C instead of 15 °C. Frost-hardening of plants increased slightly their resistance to excess PPFD. Establishment of these conifer saplings usually acclimated to shade in their natural habitat may hardly be endangered by a sudden increase of PPFD, e.g., by gap formation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

11.
Abstract Stomatal conductance and transpiration were measured on normally-irrigated (NI) and water-stressed (WS) field-grown cotton (Gossypium hirsutum L.) exposed throughout the growing season to a gradient of ozone (O3) concentrations. Environmental conditions during the growing season strongly affected stomatal responses and yield reductions due to O3 exposure. Maximum stomatal conductance and transpiration decreased with increased O3 concentration both in NI and WS treatments. Maximum conductance in severely O3-stressed plants averaged 30% lower than charcoal-filtered (control) plants, but maximum transpiration was only 17% lower. Conductance in WS plots averaged 22% lower than in NI plots but transpiration rates were the same in both treatments. Yield reductions induced by O3 were highly correlated (r2= 0.84) with daily transpiration. Stomata of O3-stressed plants opened and closed at the same rate as control plants in response to changes in light intensity, suggesting that the mechanism of stomatal movement had not been impaired by exposure to O3. Reductions in conductance and transpiration in O3-stressed plants were attributed to inhibition of photosynthesis by O3, leading to accumulation of CO2 in intercellular spaces.  相似文献   

12.
Stomatal closure, relative water content (RWC) and vegetative growth were monitored in Ilex paraguariensis plants grown under well-watered conditions with a photosynthetic photon flux density (PPFD) varying from 100% to 1.5%, and sprayed weekly with either distilled water (control) or 1.89 mM abscisic acid (ABA). ABA treatments caused stomatal closure, ranging from 62% to 73%. These treatments also increased RWC in the early evening from 82% to 92% and 88% to 94% in mature and immature leaves, respectively. Such alleviation of the water stress was correlated with increases in leaf area, leaf dry weight (DW), shoot length and shoot DW. On day 35 from the beginning of the experiment, the increases in DW of both leaves and shoots were 1.5-fold at the 1.5% PPFD and 3-fold (for leaves) and 4.5-fold (for shoots) under 100% PPFD. In water-sprayed control plants grown under 1.5% PPFD shoot length also increased significantly, although these shoots contained more ABA (assessed by capillary gas chromatography–mass spectrometry) than those of plants grown under 100% PPFD. These results show that ABA sprayed on to leaves promotes growth in I. paraguariensis plants by alleviating diurnal water stress.  相似文献   

13.
Stomatal and photosynthetic responses to variable sunlight   总被引:11,自引:0,他引:11  
Most plants experience many fluctuations in sunlight from full sun to shade throughout the day. Under these conditions, stomatal and photosynthetic responses vary dramatically among species depending on water status and growth form. Many herbaceous, fast-growing species rapidly reduce stomatal opening during short-term shade periods. Rapid stomatal closure during shade conserves water, but may also reduce CO2 uptake. Because periods of alternating sun and shade can reduce accumulative water stress that would otherwise severely curtail carbon gain, some herbs are restricted to habitats with intermittent periods of shade. In contrast to herbaceous growth forms, woody species maintain relatively constant stomatal opening during both sun and shade periods. This results in greater CO2 uptake, but with greater water loss. These two generalized response patterns for woody and herbaceous species to natural variations in sunlight conflict with conventional ideas of water use and carbon gain based on measurements made under constant light.  相似文献   

14.
E.-D. Schulze  M. Küppers 《Planta》1979,146(3):319-326
Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.  相似文献   

15.
Leaf anatomical and chemical characteristics, water relations and stomatal regulation were studied in the shrub Myrtus communis growing under two contrasting Mediterranean light environments (full light versus 30% of full light) during the spring-summer period. These studies aimed to assess plant response to the combined effects of light and water availability. Foliar morphology, anatomy and chemistry composition acclimated positively to light conditions. Leaves of sun-exposed plants were thicker (38.7%) than those of shaded plants, mainly due to increased palisade parenchyma thickness, had a higher nitrogen concentration and stomatal density than the shade ones, which maximized foliar area (>SLA) and Chl/N molar ratio to improve light interception. Chlorophyll concentration per leaf area (Chl(a)) was always higher in sun leaves while, as expressed on dry mass (Chl(m)), significant differences were only apparent in September, shade leaves presenting higher values. During the summer period Chl(a) and Chl(m) markedly declined in sun leaves and remained unchanged in shade ones. The ratio of chlorophyll a/b was not affected either by the light intensity or by the season. Shade leaves presented generally a higher concentration of soluble carbohydrates per dry mass. No significant differences in starch concentration were apparent between sun and shade leaves and a gradual depletion occurred during the water stress period. Maximum stomatal conductances correlated positively with predawn water potential. Throughout the season, sun plants always presented higher leaf conductance to water vapour and lower minimum leaf water potentials, indicating an interaction of light-environment on these water relation parameters. Stomatal closure constitutes a mechanism to cope with diurnal and seasonal water deficits, sun plants presenting a more efficient control of water losses during water deficiency period. In addition, both sun and shade plants evidenced leaf osmotic adjustment ability in response to water stress, which was greater in sun ones.  相似文献   

16.
Galmés J  Pou A  Alsina MM  Tomàs M  Medrano H  Flexas J 《Planta》2007,226(3):671-681
Aquaporins seem essential for the regulation of plant water status and expenses. Richter-110 is a Vitis hybrid (Vitis berlandieri × rupestris) reputed to be strongly drought-tolerant. Three irrigation treatments were established in Richter-110 plants growing outdoors defined by the resulting maximum stomatal conductance (g s), and ensuring water stress situations not severe enough as to stop photosynthesis and growth: well-watered plants (g s about 250 mmol H2O m−2 s−1), moderate water stress (g s about 150 mmol H2O m−2 s−1) and severe water stress (g s about 50 mmol H2O m−2 s−1). Plants under water stress were kept at constant water availability for 7 days to check for possible acclimation. Finally, plants were re-watered, and allowed to recover, for 3 days. Stomatal conductance, leaf water potential, xylem abscisic acid (ABA) content and root and stem hydraulic conductivity were determined. The relative amounts of expression of mRNA encoding seven putative aquaporins were determined in roots and leaves by RT-PCR. The decrease in stomatal conductance with moderate and severe water stress was associated with increasing ABA contents, but not with the leaf water potential and hydraulic conductivities, which remained unchanged during the entire experiment. Aquaporin gene expression varied depending on which aquaporin, water stress level and the plant organ. We suggest that aquaporin expression was responsive to water stress as part of the homeostasis, which resulted in constant leaf water potential and hydraulic conductivity.  相似文献   

17.
This study aimed to determine if two species of sunflower, Helianthus annus L. cv. Hysun 31 (cultivated, single-stemmed genotype) and Helianthus petiolaris Nuttall ssp. fallax (wild, many-hranched genotype) differed in the response of leaf growth to water deficits. Earlier published studies, concerned only with H. annuus, failed to reveal differences in the response of sunflowers to water stress. Plants of the two species were paired in large containers of soil and grown under high radiation in a glasshouse. One batch of plants was irrigated and the other allowed to dry so that predawn leaf water potentials declined at an average of 0.072 MPa day?1. The dry batch was rewatered when predawn leaf water potentials reached ?0.85 MPa. The stress imposed was sufficient to curtail leaf growth so that plants in the dry treatment had only 60% of the leaf area of irrigated plants at the onset of rewatering. Both species were affected by stress to the same relative extent, though their leaf areas at this stage differed 7-fold. Both genotypes also recovered to the same degree in the long term, finally having leaf areas and gross dry matter distribution patterns which were indistinguishable from plants which were irrigated throughout. However, water stress resulted in different distribution patterns of leaf area: H. annuus produced larger leaves at the top of its single stem which compensated for the reduced area in lower leaves, whereas H. petiolaris compensated in the leaves on its branches. Leaves which emerged after the time of stress were most able to compensate in area subsequently. For example, those leaves of H. annuus which emerged one week after stress-relief were more than three times larger than comparable leaves on plants irrigated continuously. Leaf expansion rates were affected earlier in the stress cycle than leaf conductance in H. annuus, but not in H. petiolaris. But as with other plant responses to water stress, the differences between the two species were small.  相似文献   

18.
 Plants of Helianthemum almeriense were micropropagated on MS medium and inoculated in vitro with Terfezia claveryi mycelium on MH medium and vermiculite. Mycorrhizal (M) and non-mycorrhizal (NM) plants were subjected to a drought stress period of 3 weeks in greenhouse conditions with the soil matric potential maintained at –0.5 MPa. Drought stress did not affect the amount of mycorrhizal colonization. The survival rate of M plants at the end of the drought stress period was higher than that of NM plants. The water potential was higher in M plants than in NM plants by 14% in well-watered and 26% in drought-stressed plants. Transpiration, stomatal conductance and net photosynthesis were higher in M plants than in NM plants. Transpiration was 92% higher in M plants than in NM plants under drought-stress conditions and 40% when irrigated. Stomatal conductance was 45% and 14% higher and net photosynthesis 88% and 54% higher, respectively, in M than in NM plants. Drought-stressed M plants accumulated more N, P and K than drought-stressed NM plants. Reduced negative effects of drought stress on H. almeriense by the desert truffle T. claveryi could be ascribed to specific physiological and nutritional mechanisms, suggesting that this mycorrhizal symbiosis aids adaptation to arid climates. Accepted: 7 July 2000  相似文献   

19.
Summary Factors affecting seedling Virola surinamensis (Myristicaceae) survival and growth were investigated on Barro Colorado Island, Panama. Seedlings planted 3 months after germination were monitored in treefall gaps and understory using 2.25 ha irrigated and control plots through the first dry season. During the dry season, irrigated plants in gaps increased total leaf area significantly more than did irrigated plants in the shaded understory. Over the same dry season, control plants in gaps and in the shaded understory lost similar amounts of leaf area. Seedlings in understory were suppressed in stem height and biomass in both irrigated and control plots; these measures were greater in gaps and greatest in irrigated gaps (height). Roots were similar in length in all treatments, but greater in biomass in gaps than understory due to greater proliferation of secondary roots in control and irrigated gaps than in control and irrigated understory. This experiment demonstrates both water and light limitation during the first dry season after germination. V. surinamensis seedlings are capable of survival and modest growth of leaf area in the deep shade of the understory in moist locations; they are severely disadvantaged in shaded understory subject to drought, where most seeds fall and most seedlings establish. The broken canopy of a gap allows shoot and consequently root growth that permits seedlings to survive seasonal drought.  相似文献   

20.
Sri Lankan rice farmers rarely practise green manuring and they depend mostly on chemical fertilizers for the nutrient requirement of their crops. With the removal of government subsidy on fertilizers since 1990, they are now faced with the dilemma of meeting the cost of production to sustain previous yield targets. Therefore the present study devotes to evaluate alternative cheaper nutrient sources like green manures for rice. Results of recent work in Sri Lanka have shown that Sesbania speciosa Taub. ex Engl. is a promising green manure for lowland rice in the dry zone. It was evaluated to adopt a suitable green manuring system for rice. Its year-round biomass production, nutrient accumulation during the vegetative growth and nitrogen fixation were monitored. Field trials were conducted to investigate its ability to suppress weed growth when grown during fallow periods and its contribution to soil fertility and effect on rice yield. Highest biomass of around 100 g dry matter per plant, was achieved when S. speciosa was seeded in August and harvested at flowering in November. When this was planted during a fallow period at a spacing of 0.25×0.25 m (16 plants m-2), percentage weed reduction was as much as 40%. Its N2 fixation activity was similar to that of S. sesban (L.) Merr., Nitrogen concentration in S. speciosa increased until 70 days after establishment and then decreased towards flowering. Phosphorus and K accumulation was also effective during this period. Therefore suitable time for soil-incorporation of S. speciosa is around 70 days after establishment. S. speciosa-manured and chemically fertilized rice crops were comparable in terms of grain yield, indicating the effective nutrient supplying potential of this green manure. Straw biomass was significantly high under S. speciosa, because of the high N-allocation to vegetative growth of rice under this. This evaluation shows that S. speciosa not only supplies N, but is also an effective and complete supplier of other nutrients for rice. A scheme to introduce this into rice production system is proposed, where S. speciosa is seeded/broadcast two weeks before crop harvest (around January) in Maha (major) season as well as Yala (minor) season (around June) so that its biomass can be incorporated into soil during land preparation of subsequent seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号