首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four‐year‐old Scots pine [Pinus sylvestris L. (Pinaceae)] seedlings were exposed to medium and severe drought stress for two consecutive years. The anatomical properties of drought‐stressed Scots pine wood and their impact on the performance of destructive wood boring early instars of Hylotrupes bajulus L. (Coleoptera: Cerambycidae) were studied. Drought stress significantly decreased diameter of earlywood tracheids in both growing years and diameter of latewood tracheids after the second growing season only. Cell lumen area was significantly decreased by both medium and severe drought stress compared to well‐watered controls. In addition, area of cell lumen was significantly smaller in severe drought than in medium drought treatment. The drought stress marginally increased the number of resin canals in the wood, but did not affect the size of resin canals either in wood or bark. The relative growth rate of xylophagous H. bajulus neonatal larvae was not significantly affected by drought stress during the 106‐day feeding period on Scots pine wood blocks. The results show that although water availability was an important factor affecting the development and anatomy of wood cells, observed changes in wood characteristics did not affect the performance of early instars feeding on wood processed from drought‐stressed young Scots pine seedlings.  相似文献   

2.
Cell walls, especially secondary cell walls (SCWs), maintain cell shape and reinforce wood, but their structure and shape can be altered in response to gravity. In hardwood trees, tension wood is formed along the upper side of a bending stem and contains wood fiber cells that have a gelatinous layer (G-layer) inside the SCW. In a previous study, we generated nst/snd quadruple-knockout aspens (Populus tremula × Populus tremuloides), in which SCW formation was impaired in 99% of the wood fiber cells. In the present study, we produced nst/snd triple-knockout aspens, in which a large number of wood fibers had thinner SCWs than the wild type (WT) and some had no SCW. Because SCW layers are always formed prior to G-layer deposition, the nst/snd mutants raise interesting questions of whether the mutants can form G-layers without SCW and whether they can control their postures in response to changes in gravitational direction. The nst/snd mutants and the WT plants showed growth eccentricity and vessel frequency reduction when grown on an incline, but the triple mutants recovered their upright growth only slightly, and the quadruple mutants were unable to maintain their postures. The mutants clearly showed that the G-layers were formed in SCW-containing wood fibers but not in those lacking the SCW. Our results indicate that SCWs are essential for G-layer formation and posture control. Furthermore, each wood fiber cell may be able to recognize its cell wall developmental stage to initiate the formation of the G-layer as a response to gravistimulation.  相似文献   

3.
Summary The objective of this study was to separate the effects of plant biomass and growth rate on vegetative reproduction in two species of cat-tail, Typha latifolia and T. angustifolia. Replicate clones of both species were grown under conditions of 100%, 42%, 24%, and 9% full sunlight with harvests at 41, 70, and 91 days after shading. T. angustifolia produced most of its vegetative offspring before the first harvest and increased biomass over the remainder of the experiment by increasing the size of its ramets. In contrast, T. latifolia produced vegetative offspring gradually throughout the experiment adding new ramets only after existing clones were of mature size. As a result of these differences in the cloning process, T. angustifolia showed little correlation between vegetative reproduction and clone size while T. latifolia showed a strong correlation between gegetative reproduction and clone size at the three highest light intensities. Growth rates, average clone size and vegetative reproduction were all reduced by reductions in light intensity for both species. However, no effect of growth rate on the relationship between clone size and vegetative reproduction in T. latifolia could be detected. T. latifolia showed greater survivorship and more biomass production under 9% light than T. angustifolia indicating a greater shade tolerance.  相似文献   

4.
White-rot fungi, which have the ability to degrade all the wood components including lignin, are of great interest in biotechnological processes based on wood and other lignocellulosic materials. It was demonstrated earlier that enough lignin can be degraded to cause a decrease in the energy demand for production of thermomechanical pulp if wood chips are pretreated by cellulaseless mutants of white-rot fungi. This paper concerns the growth conditions in wood for three white-rot fungi and their cellulaseless mutants in order to determine optimal conditions for such pretreatment processes. The pH and temperature optima have been determined as well as the growth rate in wood. The results show that the growth rate in wood. at least for Cel 44 (a cellulaseless mutant of Sporotrichum pulverulentum), is not the rate-limiting step in delignification. From different mixtures of urea and NH4H2PO4 the optimal nitrogen source was determined for the mutants. The optimal C/N ratio was found to vary between 160/1 and 400/1. It is suggested that the lower the C/N ratio, the faster the growth. It was also demonstrated that both water- and acetone-extractable substances in wood supported the growth of cellulaseless mutants. When some glucose was added to the wood, the weight loss caused by Cel 44 increased. All these observations support earlier findings that lignin in wood cannot be degraded by white-rot fungi unless a more easily metabolizable carbon source is used simultaneously.  相似文献   

5.
Summary

The vegetative growth of the olive tree in Messina is described. The growth period begins at the end of March and prosecutes without interruption as late as November. The secondary wood tissue producted during summer time (from Yuly to August) is abnormal being of a parenchimatoide type. During winter there is a well defined rest period.

The cambium produces secondary wood and bark with an alternate rythm, so that in spring the wood production prevails on the liber and in autumn the opposite condition is realized.

Each phase of production of secondary conducting tissues (wood as well as bark) is followed by a phase of starch storing.

In the stem several false wood rings are produced during one year, while in the young branches each wood ring corresponds to one year.

The longitudinal growth and cork formation on the branches of the year are particularly pronounced during spring (March-May).

Cambium cells swell in a characteristic way before they start dividing and collapse during the resting periods, thickening evidently their walls, so that in winter it is difficult to distinguish a cambial cell from a parenchimatic one.

The behaviour of the vegetative growth of the olive tree in Messina is discussed on the base of the climatic characters of the region.  相似文献   

6.
To clarify the wood properties and chemical composition of branches of Viburnum odoratissimum produced by unusual eccentric growth, we investigated growth strain (GS), basic density (D b), microfibril angle (MFA), elastic moduli (E L and E L/D b), creep deformation, cellulose crystalline features, and lignin structure in upper and lower sides of the branches, and considered the correlations among these factors. In most measuring positions, the distribution of GS showed that higher tensile GS was in the upper side and compressive GS was in the lower side of the branch, which combines GS features of reaction wood. However, the generation of GS in the lower side was different from that in compression wood, because E L/D b and MFA had a negative correlation. The creep compliance curves show that the upper-side wood had low rigidity and high viscosity, whereas the lower-side wood had large rigidity and low viscosity. Relative creep had a negative relation with MFA in the upper side, which is unusual. The cellulose crystalline features showed no obvious difference between both sides of the branch; however, the lignin with less β-O-4 proportion and less S units but more G units seemed to exist in the lower side because of a decreased syringyl/guaiacyl (S/G) molar ratio. This suggests that cell wall could be reinforced by lignin resulting in lower viscosity in the lower side of the branch. Additionally, the S/G ratio showed a relatively high correlation with GS in the lower side. These results suggest that lignin structure plays an important role in adapting to environmental changes during eccentric growth for V. odoratissimum.  相似文献   

7.
High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.  相似文献   

8.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

9.
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (A N) and stomatal conductance (g s) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.  相似文献   

10.
Chlamydomonas reinhardtii Dang, was grown in a chemostat culture under phosphate limitation. The steady state concentration of phosphate was below the detection limit (< 1 μg P/L) in all runs. The cellular content of phosphorus (Qp), polyphosphate (Qpp) and chlorophyll a increased with increasing dilution rate, and the growth rate of the alga was described by Qp as well as Qpp in the Droop model. The ratio Qpp/Qp and the activity of alkaline phosphatase were maximal at high and low growth rates, respectively. Palmelloids of Chlamydomonas were found at high dilution rates (D > 0.12 h?1) and became attached to the wall of the culture vessel. They differed from the vegetative stage in both chemical composition and growth rate. Their contents of phosphorus and chlorophyll a were low, as in the vegetative cells, which grew at a low growth rate, whereas the ration Qpp/Qp and the activity of alkaline phosphatase were comparable with those of fast growing vegetative cells. The growth rate of the palmelloids was 0.03 h?1 whereas maximum growth rate (μm) for the vegetative cells was 0.21 h?1.  相似文献   

11.
Botryosphaeriaceae isolates of six species were assessed for their potential to infect grapevine tissues other than their tissues of isolation, primarily to determine sources of inocula that could contribute to bunch rot. Pathogenicity tests were conducted in vitro on berries and wood and in vivo on dormant buds of cultivars Chardonnay and Shiraz in glasshouse and field experiments. Tissue specificity and variation in virulence for different isolates was assessed. All isolates were able to infect and cause symptoms on detached 1‐year‐old canes and mature berries. Virulence was not affected by origin tissue and varied between isolates and within species. Inoculation of dormant buds did not affect bud burst or further development of shoots and fruit, however, a small number of Botryosphaeriaceae were reisolated from bunches at later growth stages. We conclude that Botryosphaeriaceae species are important pathogens of both the vegetative tissues and wood of grapevines. Grapevine wood infected with Botryosphaeriaceae could act as a source of inoculum for reproductive and vegetative tissue. Equally, the vegetative and reproductive tissues can also act as inoculum sources for wood infection. Therefore, all sources of inocula should be taken into consideration when developing management strategies for Botryosphaeria bunch rot and Botryosphaeria canker diseases.  相似文献   

12.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

13.
Clonal repeatabilities on individual tree (Hi2 H_i^2 ) and clonal mean (H[`(C)] 2 H_{{\overline C }}^2 ) bases for growth (14-year height and volume), wood quality traits (latewood proportion, wood density, fiber length, and microfibril angle), and genotypic correlations among the traits were estimated, using 30 white spruce (Picea glauca [Moench] Voss) clones from six full-sib families (five per family). These families were selected from a clonally replicated test to represent different early growth categories: fast, moderate, and slow. Wood increment cores of the 30 clones were collected from two contrasting sites at age 19 years. For growth traits, in contrast to most wood quality traits, more genetic variation was accounted for by clone within family than by family within growth category. Both growth and wood quality traits appear to be under moderate genetic control, with [^(H)]i2 = 0.20 - 0.36 \widehat{H}_i^2 = 0.20 - 0.36 and [^(H)][`(C)] 2 = 0.70 - 0.83 \widehat{H}_{{\overline C }}^2 = 0.70 - 0.83 . The only exception was microfibril angle ( [^(H)]i2 = 0.10  \textand  [^(H)][`(C)] 2 = 0.34 \widehat{H}_i^2 = 0.10\;{\text{and}}\;\widehat{H}_{{\overline C }}^2 = 0.34 ). Generally, faster growth resulted in a significantly lower latewood proportion and lower overall wood density. Selection for faster growth does not appear to impact on either fiber length or microfibril angle. Among the wood quality traits, significant genotypic association was observed only between latewood proportion and wood density. Despite the generally negative association between growth and wood density among families, several fast-growing clones maintained above-average density. This implies that, by adopting multiclonal forestry, one can simultaneously improve growth and wood density.  相似文献   

14.
TNM-FH Lepidopteran insect cell culture medium containing 10% fetal bovine serum (FBS), while allowing limited vegetative growth of Paenibacillus larvae (wild-type strain), the causative agent of American foulbrood, contained no viable vegetative cells upon subculture, nor were any heat resistant spores produced in this medium alone. However, TNM-FH medium cotaining embryonic or midgut cells from Trichoplusia ni, hemocytes from Estigmene acrea, ovarian and embryonic cells from Spodoptera frugiperda, embryonic cells from Plutella xylostella, Spodoptera exigua and Pseudaletia unipuncta or ovarian cells from Lymantria dispar, supported both heavy vegetative cell growth and moderate production of heat resistant spores. EX-CELL 405 serum-free insect cell culture medium alone appeared to contain the appropriate nutrients required for both vegetative growth and sporulation of P. larvae. However, in the presence of embryonic cells from T. ni, limited vegetative growth occurred and the P. larvae cells appeared to die off. This was confirmed by the fact that no colony growth occurred upon subculture, nor were any heat resistant spores detected. This was true also in the presence of fat body cells from T. ni, except that a limited number of spores (4,000/ml) were detected in the form of cology-forming units (CFU) on plates following heating to 80°C for 20 minutes. In a parallel study with a wild-type strain of Bacillus popilliae, vegetative cells grew only in TNM-FH medium in the presence of mid-gut BTI-Tn-MG and ovarian (Tn-368) cells of T. ni. No heat resistant spores, however, were detected in any of the cultures. When BTI-Tn-MG and Tn-368 cells were further challenged with four variant cultures of B. popilliae, vegetative growth and limited sporulation were achieved. The BTI-Tn-MG cell line in TNM-FH medium produced as many as 12,000 spores/ml after 21 days in culture.  相似文献   

15.
Aims: The aim of this study was to isolate lactic acid bacteria from chilli waste and evaluate metabolites produced for the ability to arrest wood decay. Methods and Results: Using an optical density screening method, one bacterium (isolate C11) was identified as having pronounced antifungal properties against Oligoporus placenta. This isolate was identified as Lactobacillus brevis by 16S rRNA gene sequencing. To determine antifungal activity in wood, Pinus radiata blocks were impregnated with Lact. brevis [C11] cell‐free supernatant and exposed to brown rot fungi O. placenta, Antrodia xantha and Coniophora puteana. The treated timber demonstrated resistance to degradation from all fungi. The antifungal metabolites were heat stable and not affected by proteinase K, but were affected by neutralization with NaOH suggesting the metabolites were of an acidic nature. The presence of lactic and acetic acid was confirmed by HPLC analysis. Conclusions: Lactobacillus brevis [C11] produced acidic metabolites that were able to inhibit the growth of wood decay fungi and subsequent wood decay. Significance and Impact of the Study: Traditional wood treatments are becoming an environmental issue as the public demands more benign options. The use of lactic acid bacteria which are considered safe for general use is a potential alternative to the conventional heavy metal chemicals currently in use.  相似文献   

16.
To better understand the genetic control of growth traits (tree height, dbh, and stem volume) and wood properties (basic wood density and fiber length) in triploid hybrid clones of Populus tomentosa, genetic relationships among selected wood properties with growth traits were examined in 5-year-old clonal field trials located in Yanzhou, Gaotang, and Xiangfen, northern China. In total, 180 trees from 10 clones were sampled from the three sites. The site had a moderate effect on basic wood density (BWD), stem wood dry weight (DWT), and tree growth and had a highly significant effect on fiber length (FL) (P?<?0.001). Clonal effects were also significant (P?<?0.05) for all studied traits (except for diameter at breast height (DBH) and stem volume (SV)). Clone × site interaction was significant for all the studied traits except for FL. The estimated repeatability of clonal means for FL (0.91) was higher than for BWD (0.71), DWT (0.62), tree height (0.62), DBH (0.61), and SV (0.55). Intersite genetic correlation estimates indicated that wood properties were more stable than growth traits. Phenotypic correlation estimates between SV and BWD ranged from ?0.29 to ?0.10.  相似文献   

17.
A novel method for calculating the wood fiber length using a single cross section was devised and verified in Acacia mangium. This method is based on the ratio of cell tips to total cell number in a cross section related to the wood fiber. The fiber length was calculated using the single cross-section method and was compared with the measurements obtained using the conventional maceration method and the serial cross-section method. There was no significant difference among the three methods.  相似文献   

18.
《Plant Ecology & Diversity》2013,6(3-4):365-375
Background: Temperature directly affects xylogenesis at high-elevation treelines. The low-temperature limitation of meristematic processes is thus key to understand treeline formation.

Aims: We aimed to experimentally test in situ the direct low-temperature effect on wood tissue formation at the alpine treeline.

Methods: We applied controlled Peltier-mediated cooling and warming (±3 K) to branch segments in Pinus uncinata at the treeline in the Swiss Alps. In addition, we studied xylogenesis in untreated trees during the growing season by sequential micro-coring.

Results: Micro-cores indicated that the cambial zone was fully developed by the time the cooling and warming treatment started, shortly after snowmelt. Presumably, because of this, experimental cooling of branches did not significantly reduce the number of cells produced per season. Warming extended the formation of early wood into the late season, and thus reduced the fraction of late wood.

Conclusions: We conclude that temperatures very early in the season determine the width of the cambial zone which, in turn, strongly controls the number of tracheids produced during the remaining growing season. Temperatures later in the season mainly determine the early wood to late wood ratio. These data provide an empirical basis for the mechanistic understanding of tree growth at the treeline in response to temperature.  相似文献   

19.
Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.  相似文献   

20.
Periodicity of Wood Formation in Twigs of some Tropical Trees in Nigeria   总被引:1,自引:0,他引:1  
AMOBI  C. C. 《Annals of botany》1974,38(4):931-936
The periodicity of wood formation was studied in twigs of treesgrowing in three ecological areas in Nigeria, namely lowlandrainforest, Southern Guinea savanna and mangrove swamp. Initiationof cambial activity was correlated with bud break, and wheremultiple vegetative bud formation occurred in the lowland rainforestand the Southern Guinea savanna, the number of growth ringscorresponded with the number of times the vegetative buds opened.In the mangrove swamp, although there may be a clear correlationbetween vegetative bud growth and wood formation in 1 to 2 year-oldtwigs of Drepanocarpus lunatus and Ormacarpum verrucosum therewas no such correlation in Dalbergia ecastaphyllum. Short axillarybranches and inflorescences which developed irregularly in plantsof the mangrove swamp induced multiple growth ring formation.In D. ecastaphyllum, the pattern of unfolding of young leavesseems to play a major role in the formation of multiple growthrings. In each of the areas multiple growth ring formation couldbe induced by injury. In Daniellia oliveri there was periodicdeposition of prismatic crystals. The crystals were depositedeach time wood formation stopped. In plants in which flowersopened before the opening of the vegetative buds, there wasinitiation of cambial activity by the opened flowers in thetwigs on which the flowers were borne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号