首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary relationships within Astragalus L. (Fabaceae) were inferred from nucleotide sequence variation in nuclear ribosomal DNA of both New World and Old World species. The internal transcribed spacer regions (ITS) of 18S–26S nuclear ribosomal DNA from representatives of 26 species of Astragalus, three species of Oxytropis DC., and two outgroup taxa were analyzed by polymerase chain reaction amplification and direct DNA sequencing. The length of the ITS 1 region within these taxa varied from 221 to 231 bp, while ITS 2 varied in length from 207 to 217 bp. Of the aligned, unambiguous positions, approximately 34% were variable in each spacer region. In pairwise comparisons among Astragalus species and outgroup taxa, sequence divergence at these sites ranged from 0 to 18.8% in ITS 1 and from 0 to 21.7% in ITS 2. Parsimony analyses of these sequences resulted in a well-resolved phylogeny that is highly concordant with previous cytogenetic and chloroplast DNA evidence for a major phylogenetic division in the genus. These data suggest that the New World aneuploid species of Astragalus form a monophyletic but morphologically cryptic group derived from euploid species of Old World (Eurasian) origin, which are consequently paraphyletic.  相似文献   

2.
Nuclear ribosomal sequences (ITS) were used to study species boundaries and to infer phylogenetic patterns in wild rosemaries (Rosmarinus officinalis, R. eriocalyx, R. tomentosus). Intragenomic polymorphisms (overlapping peaks and in some cases unreadable sequences) were found throughout the sequencing electrophoretograms of most Rosmarinus accessions. Sequencing the cloned ITS products from representative individuals resulted in 25 ribotypes differing at 59 variable sites. Average sequence divergence among clones was 1.75%, and the most divergent sequences differed by 3.48%. No single ribotype was shared between any two-paired species. The highest values of intragenomic divergence were similar in R. officinalis (1.63%) and R. eriocalyx (1.14%–2.12%), and contrast with those shown by R. tomentosus (0.97%). Sequence data suggest that most divergent rDNA sequences within individuals belong to paralogous loci that apparently are not pseudogenes. A detailed inspection of direct and cloned sequences does not show evidence that the intragenomic polymorphism found is due to interspecific hybridization. Phylogenetic analyses of cloned sequences suggested that both R. officinalis and R. tomentosus were monophyletic, whereas R. tomentosus clones were nested within a paraphyletic R. eriocalyx.  相似文献   

3.
The internal transcribed spacer (ITS) regions of 18S–25S nuclear ribosomal DNA from representatives of 23 species of the subtribeGentianinae and one outgroup species (Centaurium capitatum) were analyzed by polymerase chain reaction amplification and direct DNA sequencing. Within the taxa analyzed, the length of the ITS1 region varied from 221 to 233 bp, ITS2 from 226 to 234 bp. Of the aligned sequences of 497 positions, 151 sites involved gaps or nucleotide ambiguity, 133 were invariable and 213 showed divergence. In pairwise comparisons among the taxa of the subtribeGentianinae and the outgroup, sequence divergence ranged from 1.3% to 34.1% in ITS1, from 0 to 28.1% in ITS2 and from 0.6% to 27.5% in combined ITS1 and ITS2. Phylogenetic trees generated from ITS sequences were highly resolutive and principally concordant with morphological classifications for the major phylogenetic divisions in the subtribe. An ancient divergence leading to two evolutionary lines was suggested in the subtribe by both DNA sequence and morphological data. One line encompasses the generaGentiana, Crawfurdia andTripterospermum, morphologically characterized by their glands on the base of ovary and their plicate corolla, while the other line involves all other members of the subcribe surveyed, characterized by their epipetalous glands and simple corolla without plicae.Megacodon, with glands on the base of ovary but without plicae on its corolla, was revealed to be more related to the latter group than to the former.Comastoma, Gentianella andGentianopsis were shown to be well-defined monophyletic genera.Pterygocalyx showed much closer affinity toGentianopsis than to any other genus. Some conflictions were detected in the genusSwertia.  相似文献   

4.
The genus Chamaecyparis comprises five species and one variety native to Taiwan, Japan, Canada, and USA, which demonstrates a classical eastern Asian, western North American, and eastern North American disjunct distributional pattern. The phylogenetic relationships of the species of Chamaecyparis were inferred by comparing 1130 bp of the combined data set of chloroplast trnV intron and petG-trnP intergenic spacer. The phylogenetic tree shows that Chamaecyparis nootkatensis (Cupressus nootkatensis or Xanthocyparis nootkatensis) is clearly diverged from other Chamaecyparis species. For Chamaecyparis species, C. thyoides is sister to C. formosensis and C. pisifera and these together form a monophyletic group. C. lawsoniana is sister to C. obtusa and C. taiwanensis; and these form another monophyletic group. Homogeneity in evolutionary rates was found among species in these two monophyletic groups. Results indicate the divergent evolution of C. taiwanensis and C. formosensis and molecular evidence in this investigation supports C. taiwanensis as a variety of C. obtusa. Utility of cpDNA intergenic spacer petG-trnP in Chamaecyparis is also discussed. Several biogeographical implications were inferred: (1) at least two divergence events have produced the eastern Asian, and both western and eastern North American disjunct distribution in Chamaecyparis; (2) intercontinental sister species pairs are found in Chamaecyparis; (3) cpDNA divergence between two intercontinental sister pairs of C. thyoides and C. pisifera, and C. lawsoniana and C. obtusa is 2.8% and 1.1%, which suggest an estimated divergence time of 14 and 5.5 million years ago during middle and late Miocene, respectively; (4) cpDNA divergence of two Asian Chamaecyparis groups between C. obtusa and C. taiwanensis, and between C. pisifera and C. formosensis is 0.25% and 0.57%, which suggest an estimated divergence time of 1.3 and 2.9 million years ago during Pleistocene and late Pliocene, respectively; these estimated divergence times suggest a relatively recent migration of Chamaecyparis to Taiwan from the Japanese Archipelago; (5) that climatic deterioration caused the disappearance of Chamaecyparis in continental Asia is probable.  相似文献   

5.
The internal transcribed spacer (ITS) region of the 18 S–25 S nuclear ribosomal DNA repeat was sequenced from 19 populations of the tribeLactuceae, including all species of dwarf dandelion (Krigia) and five outgroup genera. The incidence of length changes and base substitutions was at least two times higher for ITS 1 than ITS 2. Interspecific sequence divergence withinKrigia averaged 9.62% (1.61%–15.19%) and 4.26% (0%–6.64%) in ITS 1 and ITS 2, respectively. Intergeneric sequence divergence ranged from 15.6% to 44.5% in ITS 1 and from 8.0% to 28.6% in ITS 2. High sequence divergence and homoplasy among genera of tribeLactuceae suggest that the phylogenetic utility of ITS sequence data is limited to interspecific studies or comparisons among closely related genera. Trees generated from ITS sequences are essentially identical to those from restriction site comparisons of the entire nuclear ribosomal (nr) DNA region. The degree of tree resolution differed depending on how gaps were treated in phylogenetic analyses. The ITS trees were congruent with the chloroplast DNA and morphological phylogenies in three major ways: 1) the sister group relationship betweenKrigia andPyrrhopappus; 2) the recognition of two monophyletic sections,Krigia andCymbia, in genusKrigia; and 3) the monophyly of theK. occidentalis-K. cespitosa clade in sect.Cymbia. However, the two nrDNA-based trees are not congruent with morphology/chloroplast DNA-based trees for the interspecific relationships in sect.Krigia. An average of 22.5% incongruence was observed among fourKrigia data sets. The relatively high degree of incongruence among data sets is due primarily to conflict between trees based on nrDNA and morphological/cpDNA data. The incongruence is probably due to the concerted evolution of nrDNA repeating units. The results fromKrigia and theLactuceae suggest that nrDNA data may have limited utility in phylogenetic studies of plants, especially in groups which exhibit high levels of sequence divergence. Our combined phylogenetic analysis as a total evidence shows the least conflict to each of the individual data sets.  相似文献   

6.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l.  相似文献   

7.
Using sequences from the plastid trnL-F region and nrDNA ITS, we investigated the phylogeny of the fleshy-fruited African tribe Haemantheae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a combined matrix produce the most resolute and well-supported tree with parsimony analysis. Two main clades are resolved, one comprising the monophyletic rhizomatous genera Clivia and Cryptostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Apodolirion/Gethyllis subclade. One of four included Gethyllis species, G. lanuginosa, resolves as sister to Apodolirion with ITS. Relationships among the Clivia species are not in agreement with a previous published phylogeny. Biogeographic analysis using the divergence/vicariance method roots the tribe in Eastern South Africa, with several subsequent dispersals to the winter rainfall Western Cape region. Chromosomal change from an ancestral 2n=22 (characteristic of Clivia) is associated with each main clade. Reduction in number has occurred in all but Cryptostephanus, which has 2n=24 chromosomes. Increasing the sampling across all of the species in the tribe will allow a more detailed understanding of the biogeographic patterns inherent in the parsimony topology, which undoubtedly reflect Quaternary climatic changes in Southern Africa.  相似文献   

8.
We present here the first molecular phylogeny of tribe Diseae (Orchidoideae: Orchidaceae). Nuclear ribosomal ITS1, 5.8S rDNA, and ITS2 sequences were compared for 30 Diseae, 20 Orchideae, and four Cranichideae and Diurideae outgroups. ITS - rDNA sequences exhibited a transition:transversion ratio of 1.3 and extensive ITS length polymorphism. Phylogenetic analyses using maximum parsimony identified seven major core orchidoid groups. The branching order of the five Diseae and two Orchideae clades was weakly supported but indicated paraphyly of Diseae, with Disperis sister to the rest, followed by successive divergence of Brownleea, Disinae, Coryciinae sensu stricto (s.s.), Satyriinae, and terminated by Orchidinae plus Habenariinae. Within the monophyletic Disinae, Herschelia and Monadenia were nested within a paraphyletic Disa and clustered with D. sect. Micranthae. Within monophyletic Satyriinae, Satyridium rostratum plus Satyrium bicallosum was sister to the rest of Satyrium, and then Satyrium nepalense plus S. odorum was distinct from a cluster of six species. Coryciinae are paraphyletic because Disperis is sister to all other core orchidoids. Coryciinae s.s. are sister to Satyriinae plus Orchideae, with Pterygodium nested within Corycium. Maximum likelihood analysis supported possible affinities among Disinae, Brownleeinae, and Coryciinae but did not support monophyly of Diseae or an affinity between Disinae and Satyriinae. Morphological characters are fully congruent with the well-supported groups identified in the ITS phylogeny.  相似文献   

9.
To examine the genomic configuration of Avena macrostachya, internal transcribed spacers, ITS1 and ITS2, as well as nuclear 5.8S rRNA genes from three oat species with AsAs karyotype (A. wiestii, A. hirtula, and A. atlantica), and those from A. longiglumis (AlAl), A. canariensis (AcAc), A. ventricosa (CvCv), A. pilosa, and A. clauda (CpCp) were sequenced. All species of the genus Avena examined represented a monophyletic group (bootstrap index = 98), within which two branches, i.e., species with A- and C-genomes, were distinguished (bootstrap indices = 100). The subject of our study, A. macrostachya, albeit belonging to the phylogenetic branch of C-genome oat species (karyotype with submetacentic and subacrocentric chromosomes), has preserved an isobrachyal karyotype, (i.e., that containing metacentric chromosomes), probably typical of the common Avena ancestor. It was suggested to classify the A. macrostachya genome as a specific form of C-genome, Cm-genome. Among the species from other genera studied, Arrhenatherum elatius was found to be the closest to Avena in ITS1 and ITS sequence. Phylogenetic relationships between Avena and Helictotrichon remain intriguingly uncertain. The HPR389153 sequence from H. pratense genome was closest to the ITS1 sequences specific to the Avena A-genomes (p-distance = 0.0237), while the p-distance between this sequence and the ITS1 of A. macrostachya reached 0.1221. On the other hand, HAD389117 from H. adsurgens was close to the ITS1 specific to Avena C-genomes (p-distance = 0.0189), while its differences from the A-genome specific ITS1 sequences reached 0.1221. It seems likely that the appearance of highly polyploid (2n = 12x-21x) species of H. pratense and H. adsurgens could be associated with interspecific hybridization involving Mediterranean oat species carrying A- and C-genomes. A hypothesis on the pathways of Avena chromosomes evolution during the early events the oat species divergence is proposed.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 646–656.Original Russian Text Copyright © 2005 by Rodionov, Tyupa, Kim, Machs, Loskutov.  相似文献   

10.
Polygonum sect.Tovara comprises three morphologically very similar species;P. virginianum,P. filiforme, andP. neofiliforme. Sequences of internal transcribed spacers (ITSs) of nuclear ribosomal DNA of these were determined to examine phylogenetic relationships and the levels of differentiation among them. The size of ITS 1 was 241 bp inP. filiforme andP. neofiliforme, and 242 bp inP. virginianum. The size of ITS 2 was 243 bp, and that of the 5.8S rRNA coding region was 163 bp. The ITS sequences clearly separate North AmericanP. virginianum from the eastern Asian species. Nucleotide divergence between them ranges from 3.3% to 3.8% for ITS 1 and from 9.3% to 10.7% for ITS 2. The molecular data also revealed that two eastern Asian species are closely related but should be treated as distinct species.  相似文献   

11.
Banding sequences of five chromosomal arms (A, C, D, E, and F), accounting for about 70% of the total genome size in 63 Chironomus species, were used as markers to analyze divergence patterns of the linear genome structure during the evolution. The number of chromosomal breakpoints between the pairs of banding sequences compared served as a measure of divergence. It was demonstrated that the greater the divergence between the species compared, the higher the number of chromosomal breakpoints and the smaller the size of the conserved chromosomal segments. A banding sequences comparison in sibling species demonstrated a lower number of chromosomal breakpoints; the breakpoint number was maximum in a comparison of the banding sequences in the subgenera Chironomus and Camptochironomus. The use of the number of chromosomal breakpoints as a genome divergence measure provided establishment of phylogenetic relationships between 63 Chironomus species and discrimination of sibling species groups and cytocomplexes on a phylogenetic tree.Translated from Genetika, Vol. 41, No. 2, 2005, pp. 187–195.Original Russian Text Copyright © 2005 by Gunderina, Kiknadze, Istomina, Gusev, Miroshnichenko.  相似文献   

12.
Chromosome C-banding and two-color fluorescent in situ hybridization (FISH) were used to compare the chromosomes, to identify the chromosomal localization of the 45S and 5S rRNA genes, and to analyze the sequences of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the 45S rRNA genes in the genomes of grasses Zingeria biebersteiniana (2n = 4), Z. pisidica, Z. trichopoda (2n = 8), Colpodium versicolor (2n = 4), and Catabrosella variegata (syn. Colpodium variegatum) (2 n = 10). Differences in C-banding pattern were observed for two Z. biebersteiniana accessions from different localities. Similar C-banding patterns of chromosomes 1 and 2 were demonstrated for the Z. pisidica and Z. biebersteininana karyotypes. Chromosome C banding and localization of the 45S and 5S rRNA genes on the chromosomes of the two Zingeria species confirmed the assumption that Z. pisidica is an allotetraploid with one of the subgenomes similar to the Z. biebersteiniana genome. ITS comparisons showed that the unique two-chromosome grasses (x = 2)—Z. biebersteiniana (2n = 4), Z. trichopoda (2n = 8), Z. pisidica (2n = 8), and C. versicolor (2n = 4), which were earlier assigned to different tribes of subtribes of the family Poaceae—represent two closely related genera, the genetic distance (p-distance) between their ITSs being only 1.2–4.4%. The Zingeria species and C. versicolor formed a common clade with Catabrosella araratica (2n = 42, x = 7) on a molecular phylogenetic tree. Thus, the karyotypes of Zingeria and Colpodium, which have the lowest known basic chromosome number (x = 2), proved to be monophyletic, rather than originating from different phylogenetic lineages.  相似文献   

13.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I–VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type α and type β) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

14.
Freshwater sponges include six extant families which belong to the suborder Spongillina (Porifera). The taxonomy of freshwater sponges is problematic and their phylogeny and evolution are not well understood. Sequences of the ribosomal internal transcribed spacers (ITS1 and ITS2) of 11 species from the family Lubomirskiidae, 13 species from the family Spongillidae, and 1 species from the family Potamolepidae were obtained to study the phylogenetic relationships between endemic and cosmopolitan freshwater sponges and the evolution of sponges in Lake Baikal. The present study is the first one where ITS1 sequences were successfully aligned using verified secondary structure models and, in combination with ITS2, used to infer relationships between the freshwater sponges. Phylogenetic trees inferred using maximum likelihood, neighbor-joining, and parsimony methods and Bayesian inference revealed that the endemic family Lubomirskiidae was monophyletic. Our results do not support the monophyly of Spongillidae because Lubomirskiidae formed a robust clade with E. muelleri, and Trochospongilla latouchiana formed a robust clade with the outgroup Echinospongilla brichardi (Potamolepidae). Within the cosmopolitan family Spongillidae the genera Radiospongilla and Eunapius were found to be monophyletic, while Ephydatia muelleri was basal to the family Lubomirskiidae. The genetic distances between Lubomirskiidae species being much lower than those between Spongillidae species are indicative of their relatively recent radiation from a common ancestor. These results indicated that rDNA spacers sequences can be useful in the study of phylogenetic relationships of and the identification of species of freshwater sponges.  相似文献   

15.
Using DNA–DNA hybridization, we have determined the degree of single-copy DNA (scDNA) divergence among eight species of the Drosophila obscura group. These include Old World and New World species as well as members of two subgroups. Contrary to classical systematics, members of the affinis subgroup are more closely related to American members of the obscura subgroup than are Old World species. The Old World species are not a monophyletic group. The degree of scDNA divergence among species is not necessarily correlated with morphology, chromosomal divergence, or ability to form hybrids. A unique pattern of hybrid formation was found: species separated by a ΔTm of 6.5°C can form hybrids whereas species separated by a ΔTm of 2.5°C cannot. As with other groups of Drosophila, the obscura group has discrete parts of the genome evolving at very different rates. The slow evolving fraction of the nuclear genome is evolving at about the same rate as mitochondrial DNA. The additional scDNA divergence accompanying the step from partial reproductive isolation (between North American pseudoobscura and the isolated Bogotà population) to full isolation is very small. The resolution of the technique was challenged by five closely related taxa with a maximum ΔTm of 2.5°C separating them; the taxa were unambiguously resolved and the “correct” phylogeny recovered. Finally, there is some indication that scDNA in the obscura group may be evolving considerably slower than in the melanogaster subgroup.  相似文献   

16.
Species identification of Scenedesmus-like microalgae, comprising Desmodesmus, Tetradesmus, and Scenedesmus, has been challenging due to their high morphological and genetic similarity. After developing a DNA signaturing tool for Desmodesmus identification, we built a DNA signaturing database for Tetradesmus. The DNA signaturing tool contained species-specific nucleotide sequences of Tetradesmus species or strain groups with high similarity in ITS2 sequences. To construct DNA signaturing, we collected data on ITS2 sequences, aligned the sequences, organized the data by ITS2 sequence homology, and determined signature sequences according to hemi-compensatory base changes (hCBC)/CBC data from previous studies. Four Tetradesmus species and 11 strain groups had DNA signatures. The signature sequence of the genus Tetradesmus, TTA GAG GCT TAA GCA AGG ACCC, recognized 86% (157/183) of the collected Tetradesmus strains. Phylogenetic analysis of Scenedesmus-like species revealed that the Tetradesmus species were monophyletic and closely related to each other based on branch lengths. Desmodesmus was suggested to split into two subgenera due to their genetic and morphological distinction. Scenedesmus must be analyzed along with other genera of the Scenedesmaceae family to determine their genetic relationships. Importantly, DNA signaturing was integrated into a database for identifying Scenedesmus-like species through BLAST.  相似文献   

17.
18.
Aim To infer phylogenetic relationships among Antirrhinum species and to reconstruct the historical distribution of observed sequence polymorphism through estimates of haplotype clades and lineage divergence. Location Antirrhinum is distributed primarily throughout the western Mediterranean, with 22 of 25 species in the Iberian Peninsula. Methods Plastid (83 trnS‐trnG and 83 trnK‐matK) and nuclear (87 ITS) sequences were obtained from 96 individuals representing 24 of the 25 Antirrhinum species. Sequences were analysed using maximum parsimony, Bayesian inference and statistical parsimony networking. Molecular clock estimates were obtained for plastid trnK‐matK sequences using the penalized likelihood approach. Results Phylogenetic results gave limited support for monophyletic groups within Antirrhinum. Fifty‐one plastid haplotypes were detected and 27 missing haplotypes inferred, which were all connected in a single, star‐like network. A significant number of species shared both the same haplotypes and the same geographical areas, primarily in eastern Iberia. Furthermore, many species harboured populations with unrelated haplotypes from divergent haplotype clades. Plastid haplotype distribution, together with nucleotide additivity in 59 of the 86 nuclear ribosomal ITS sequences, is interpreted as evidence of extensive hybridization. Lineage divergence estimates indicated that differentiation within Antirrhinum post‐dates the Miocene, when the Mediterranean climate was established. Main conclusions Incongruence between plastid sequences, nuclear sequences and taxonomic delimitation is interpreted as strong evidence of limited cladogenetic processes in Antirrhinum. Rather, extensive nucleotide additivities in ITS sequences in conjunction with haplotype and haplotype‐clade distributions related to geographical areas support both recent and ancient hybridization. This geographical pattern of Antirrhinum speciation, particularly in eastern Iberia, is congruent with isolation–contact–isolation processes in the Pleistocene.  相似文献   

19.
The sequences of the internal transcribed spacers (ITS regions) and the 5.8S rRNA gene, together with the electrophoretic karyotypes of 27 strains representative of the six species belonging to the genus Hanseniaspora, were examined. From the analysis of the 5.8S rRNA gene and the ITS regions, the genus Hanseniaspora is monophyletic and can be divided into two subgroups. This subdivision was supported by electrophoretic chromosome patterns. Hanseniaspora guilliermondii, H. uvarum and H. valbyensis show 6–7 bands (8 to 9 chromosomes), while the second group comprises the species H. occidentalis, H. osmophila and H. vineae which have only 5 chromosomes.  相似文献   

20.
Apiaceae (Umbelliferae) is a large angiosperm family that includes many medicinally important species. The ability to identify these species and their adulterants is important, yet difficult to do so because of their subtle fruit morphological differences and often lack of diagnostic features in preserved specimens. Moreover, dried roots are often the official medical organs, making visual identification to species almost impossible. DNA barcoding has been proposed as a powerful taxonomic tool for species identification. The Consortium for the Barcode of Life (CBOL) Plant Working Group has recommended the combination of rbcL+matK as the core plant barcode. Recently, the China Plant BOL Group proposed that the nuclear ribosomal DNA internal transcribed spacer (ITS), as well as a subset of this marker (ITS2), be incorporated alongside rbcL+matK into the core barcode for seed plants, particularly angiosperms. In this study, we assess the effectiveness of these four markers plus psbA‐trnH as Apiaceae barcodes. A total of 6032 sequences representing 1957 species in 385 diverse genera were sampled, of which 211 sequences from 50 individuals (representing seven species) were newly obtained. Of these five markers, ITS and ITS2 showed superior results in intra‐ and interspecific divergence and DNA barcoding gap assessments. For the matched data set (173 samples representing 45 species in five genera), the ITS locus had the highest identification efficiency (73.3%), yet ITS2 also performed relatively well with 66.7% identification efficiency. The identification efficiency increased to 82.2% when using an ITS+psbA‐trnH marker combination (ITS2+psbA‐trnH was 80%), which was significantly higher than that of rbcL+matK (40%). For the full sample data set (3052 ITS sequences, 3732 ITS2 sequences, 1011 psbA‐trnH sequences, 567 matK sequences and 566 rbcL sequences), ITS, ITS2, psbA‐trnH, matK and rbcL had 70.0%, 64.3%, 49.5%, 38.6% and 32.1% discrimination abilities, respectively. These results confirm that ITS or its subset ITS2 be incorporated into the core barcode for Apiaceae and that the combination of ITS/ITS2+psbA‐trnH has much potential value as a powerful, standard DNA barcode for Apiaceae identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号