首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome counts are reported for 126 taxa representing 122 species and 61 genera of Compositae. First reports include two genera, Stylocline (n = 14) and Chromolepis (n = 19), 17 species, two infraspecific taxa, and one interspecific hybrid. Five additional taxa have chromosome numbers differing from previously published accounts. Carminatia is reinstated to generic status.  相似文献   

2.
Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis‐like telomeres) on 14 species with 2n = 14 to 2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A. wendlingeri are of a type previously reported only from the gymnosperms Cycas and Pinus. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 15–26.  相似文献   

3.
The Oncidiinae has attracted attention because of the variation it exhibits in chromosome number, n = 5–30, which is greater than the range in the rest of the Orchidaceae. The genus Psygmorchis, with n = 5 and 7, has been a particular focus of controversy, and many authors have suggested that 5 and 7 are the base numbers for the subtribe. The other taxa in the subtribe presumably evolved through hybridization and polyploidy. Other workers have found that the lowest counts correlate with derived morphological conditions and have hypothesized that these low numbers result from aneuploid reductions, while higher numbers are associated with ancestral morphologies and are not the result of polyploidy. These two hypotheses were evaluated by determining isozyme numbers for 13 enzymes in species that span the chromosomal range known for the Oncidiinae (n = 5–30). Isozyme number has been shown to be a reliable indicator of polyploidy in angiosperms because polyploids display isozyme multiplicity relative to diploids. This analysis revealed no differences among species in isozyme number for the enzymes examined. Therefore, our data reject the hypothesis that species with higher chromosome numbers are polyploid.  相似文献   

4.
The genus Filipendula Mill. is generally separated from Spiraea L. in systematic keys on the basis of a single fruit character. In some taxonomic treatments of the Rosaceae, where subfamilies are used, this places the genera in separate subfamilies. Karyological studies can be useful in assaying the justifiability of such treatment and are needed because of serious discrepancies between previous reports of chromosome numbers and the recent textbook designation, on dubious grounds, of F. vulgaris as an example of a “permanent chromosome hybrid.” The results given in this paper show that x = 7 in this genus (compared with x = 9 in Spiraea) and the reasons for rejecting previous counts of 2n = 15 for F. vulgaris are presented. “Permanent chromosome hybridity” for this species is also rejected. The possibility that a cytotype with 2n = 16 may exist in the northern part of the range of F. ulmaria cannot be completely discounted, but positive evidence is presented for 2n = 14 in this species (even though 2n = 16 has been reported most frequently recently). The basic number 7 for Filipendula is in agreement with the placing of this genus in the subfamily Rosoideae even though the hereditary peculiarities (apomixis and permanent chromosome hybridity) shown by some other members of this subfamily are apparently not now needed to explain the cytological situation in Filipendula.  相似文献   

5.
Chromosome numbers are presented for 28 species of the genus Perityle, one putative inter-sectional hybrid, two species of Amauria, one species of Eutetras, and one species of Pericome. For Perityle, initial counts are recorded for 12 species of sect. Laphamia (n = 16, 17, 18, 36, ca. 102) and 11 species of sect. Perityle (n = 11, 12, 13, 16, 17, 18, 19, 34, 51). Chromosome numbers for the two species of Amauria (n = 18) are first reports for the genus. Including the current information, chromosome numbers have been recorded for 37 of the approximately 50 species recognized for Perityle. At least 24 taxa have numbers of n = 17, suggesting a base chromosome number of x = 17 for Perityle.  相似文献   

6.
Chromosome numbers are reported for 20 collections of Hawaiian Lobelioideae (Campanulaceae), representing six genera, 13 species, and two interspecific hybrids. All are n = 14. Chromosome numbers are reported for the first time for eight species of Clermontia, Cyanea, Delissea, Lobelia, and Trematolobelia; the report for Delissea is the first for that genus. Additional determinations confirmed previously reported numbers in five other species of Brighamia, Clermontia, and Cyanea. Chromosome numbers are now known for all seven genera and 20 of the 110 species. All accepted counts are n = 14. It is suggested that all Hawaiian Lobelioideae share this number and are paleotetraploid. There is no evidence that the prolific speciation evident among these plants was accompanied by euploid or aneuploid change in chromosome number. The Hawaiian Lobelioideae, particularly the monophyletic lineage of 91 baccate species, offer further support for the generalization that change in chromosome number is an uncommon mode of speciation in insular floras.  相似文献   

7.
Chromosome numbers are reported for 33 species of the tribe Phaseoleae. Six reports are first counts for their species; one report (Ophrestia hedysaroides) is a first count for the genus. This increases the number of genera counted to 53 out of a total 84 for the tribe. A survey of base numbers shows a general pattern of numbers 10 or 11, the same base numbers as in the neighboring tribes Dalbergieae sensu lato, Galegeae sensu lato, and Abreae. The chromosomes are generally small and polyploidy is uncommon. Deviations from base numbers 10 or 11 are mostly found in those genera with morphological pecularities and puzzling taxonomic placements: Erythrina (21), Clitoria (8, 11, 12), Butea (9), Calopogonium (18), Teramnus (14), and Strongylodon (14). Two genera have base numbers which suggest derivation by polyploidy: Glycine (20) and Cologania (22).  相似文献   

8.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

9.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

10.
Chromosome numbers are presented for 99 populations of 13 species of Antennaria, including A. plantaginifolia, A. neglecta, A. virginica, A. solitaria, A. racemosa, A. corymbosa. A. rosea, A. media, A. Parlinii, A. fallax, A. neodioica, A. canadensis, and A. petaloidea. Four species from the eastern United States (A. plantaginifolia, A. neglecta, A. solitaria, and A. virginica) were determined as diploid (n = 14), and these are all sexual. Diploid counts were also obtained for two sexual species (A. racemosa and A. corymbosa) from the western United States. Chromosome counts are presented for two heteroploid agamic complexes occurring in the eastern United States; these include what have traditionally been referred to as A. Parlinii, A. fallax, A. neodioica, A. canadensis, and A. petaloidea. Determinations of 2n = 56, 70, 84, and 112 were obtained for the A. Parlinii and A. fallax groups, where 2n = 84 had been the only number previously reported. Numbers of 2n = 84 were confirmed for A. petaloidea and A. canadensis and 2n = 56 for A. neodioica. The western United States polyploid species (A. rosea and A. media) are reported as 2n = 56. The presence of apomixis is correlated with polyploidy. The distribution of chromosome numbers in eastern United States Antennaria demonstrates that two diploids and many polyploids occur above the glacial margin, and thus there is an increase in the frequency of polyploidy with latitude. Colonization of the glaciated region by Antennaria following the recession of the Wisconsin ice sheet is also discussed. Many of the polyploids occur only in the glaciated region, thus suggesting a recent origin for these cytotypes. There is evidence indicating that the original base number in Antennaria may be x = 7.  相似文献   

11.
Chromosome numbers were determined for 86 Anthurium species. Fifty-one of these were newly determined with counts ranging from 2n = 24 to 66 and 30 being the most common. All known Anthurium chromosome numbers were summarized, and 43 taxonomic changes were made in the previous reports to reflect current taxonomy. In terms of somatic chromosome numbers, the numbers form four polyploid series of 20–40–60, 24–30–48–84, 28–56 and 30–60–90–ca. 124. Paleoaneuploidy, polyploidy and B-chromosomes are basic features of the genus, but subsequent recent aneuploidy is not. The exact nature of chromosome evolution in Anthurium remains to be elucidated.  相似文献   

12.
Chromosome counts are reported for 71 collections in 14 taxa of Lipochaeta DC. (Compositae) of the Hawaiian Islands. Counts for 13 of the taxa are first reports. Lipochaeta contains diploids, n = 15, and tetraploids, n = 26. Ploidy level is taxonomically significant for recognizing sections, and on the basis of these data, together with morphological and chemical evidence, major realignments of species into the secions of Lipochaeta have been made.  相似文献   

13.
Reports of 209 original chromosome counts are made for the tribe Astereae of Compositae, including first counts for two genera and 46 species or subspecies. With over 80 % of the species counted, chromosome numbers are now available for all North American sections of Haplopappus. Two major groupings are apparent: one, with basic numbers of x = 4, 5, or 6, is basically herbaceous; the other, with x = 9, consists of shrubs or subshrubs. Aneuploidy is known only in the “herbaceous” group of Haplopappus, and polyploidy is more extensive there than in the woodier group of sections.  相似文献   

14.
Analyses of meiotic and mitotic chromosomes were undertaken in 16 taxa of Echinocereus belonging to 12 species and all seven taxonomic sections (sensu Taylor). Chromosome numbers are reported for the first time for eight taxa, and previously published chromosome counts are confirmed for the remaining eight. Both diploid and polyploid counts were obtained. Eleven (69%) of the taxa surveyed were diploid (2n = 22); the five varieties of E. engelmannii were polyploid (2n = 44). Overall, chromosome counts are available for 23 of the 48 proposed species (sensu Taylor). Of these, 19 (82%) are diploid, and four (18%) are polyploid. Polyploid cytotypes are most common in the primitive sections, e.g., sections Erecti and Triglochidiatus, which suggests that polyploidy is probably a derived condition in Echinocereus. Polyploid taxa range from medium to high latitudes and elevations relative to the overall distribution of the genus. Polyploidy, hybridization, and cryptic chromosomal rearrangements are thought to be the major causes of the speciation events of the genus.  相似文献   

15.
For the large Neotropical plant family Bromeliaceae, we provide new data on chromosome numbers, cytological features and genome size estimations, and combine them with data available in the literature. Root‐tip chromosome counts for 46 species representing four subfamilies and a literature review of previously published data were carried out. Propidium iodide staining and flow cytometry were used to estimate absolute genome sizes in five subfamilies of Bromeliaceae, sampling 28 species. Most species were diploid with 2n = 50 in Bromelioideae, Puyoideae and Pitcairnioideae, followed by 2n = 48 observed mainly in Tillandsioideae. Individual chromosome sizes varied more than tenfold, with the largest chromosomes observed in Tillandsioideae and the smallest in Bromelioideae. Genome sizes (2C‐values) varied from 0.85 to 2.23 pg, with the largest genomes in Tillandsioideae. Genome evolution in Bromeliaceae relies on two main mechanisms: polyploidy and dysploidy. With the exception of Tillandsioideae, polyploidy is positively correlated with genome size. Dysploidy is suggested as the mechanism responsible for the generation of the derived chromosome numbers, such as 2n = 32/34 or 2n = 48. The occurrence of B chromosomes in the dysploid genus Cryptanthus suggests ongoing speciation processes closely associated with chromosome rearrangements. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 349–368.  相似文献   

16.
In this survey, chromosome counts of different species belonging to the genus Onosma are summarized and then karyological patterns available including frequency of cytotype occurrence, percentage of taxa with particular basic chromosome number and rate of polyploidy in the genus are evaluated. Quantitative parameters have been used to characterize chromosome number (CN) variation. In order to verify if variation patterns differ between three groups of Onosma, Index of CN Heterogeneity (ICNH) was quantified. In addition, meiotic chromosome numbers of 14 populations belonging to 11 species growing in Iran, namely Onosma araratica (2n = 2x = 16), O. asperrima (2n = 2x = 16), O. bulbotricha (2n = 2x = 18), O. kotschyi (2n = 2x = 16), O. microcarpa (2n = 2x = 16), O. nigricaulis (2n = 2x = 16), O. nervosa (2n = 2x = 16), O. obtusifolia (2n = 2x = 16), O. pachypoda (2n = 2x = 16), O. stenosiphon (2n = 2x = 20) and O. subsericea (2n = 2x = 16), were determined. With the exception of O. microcarpa and O. bulbotricha, all chromosome counts are reported for the first time. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Chromosome counts are reported for 33 species from all four sections of the genus Haplopappus in South America. These include first reports for 28 species and two putative hybrids. All chromosome numbers reported herein are 2n = 5II, with the exception of H. prunelloides with 2n = 6II. Unlike the North American species, the morphological diversity of South American taxa is not concomitant with chromosomal variation.  相似文献   

18.
Unlike other tribes of Gentianaceae, Exaceae have so far received little attention regarding their karyological evolution. Indeed, only 35 chromosome number counts (19 species) have been referenced to date, representing only a negligible fraction of the tribal diversity. In this paper, we performed an intensive chromosome count on material collected in the field (South and central Africa, plus Madagascar), encompassing 155 populations and c. 60 species from four genera of Exaceae, including Exacum, Ornichia, Sebaea and Tachiadenus. Fifty nine species (14 Exacum, one Ornichia, 42 Sebaea and two Tachiadenus) were examined for the first time, revealing a broad set of chromosome numbers (2n = 18, 28, 32, 36, 42, 56) and the occurrence of polyploid systems within Exacum and Sebaea. These results allow us to postulate x = 7, 8 or 9 as possible base chromosome numbers for Exaceae and emphasize the importance of both dysploidy and polyploidy processes in the evolution of the tribe. Finally, chromosome numbers appear to be associated to some morphological or geographical traits, suggesting new systematic combinations and likely active speciation patterns in the group. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 556–566.  相似文献   

19.
Reports of 150 original chromosome counts are recorded, including reports of 22 genera and 57 species and subspecific taxa in tribe Lactuceae. Also included are first reports for 12 specific or subspecific taxa. x = 9 appears to be the ancestral base of the tribe. Chromosome numbers are known for over 85% of the genera of the tribe and the frequency of polyploidy is ca. 23%, which is about one-half that of the angiosperms.  相似文献   

20.
Chromosome numbers are reported from 67 populations of 36 taxa, mostly in Phoradendron. The basic number is 14 in Phoradendron and probably also in Arceuthobium. The 4 species of Struthanthus for which chromosome numbers are recorded suggest that the basic number is 8. Numbers of n = 8 and n = 10 have been reported for Psittacanthus. In Phoradendron the 22 taxa examined are all diploid, although 1 instance of polyploidy was discovered. Objects interpreted as supernumerary chromosomes were discovered in a number of species of Phoradendron; no evidence of sex chromosomes previously reported in Phoradendron was observed. The Loranthaceae have chromosomes comparable in size to the largest in the plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号