首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study was to identify the degree to which the frequency and timing of herbivory by white-tailed deer (Odocoileus virginianus) and subsequent plant response varied across 12 populations of the perennial herb Trillium grandiflorum. Effects of natural and experimental herbivory on the stage and size of reproductive plants were measured. Both the frequency and timing of herbivory varied across T. grandiflorum populations. Reproductive plants were more likely to regress to nonreproductive stages in the next growing season when (1) reproductive plants were consumed by deer (vs. intact reproductive plants); (2) reproductive plants were consumed early in the growing season (vs. reproductive plants consumed late in the growing season); (3) reproductive plants were smaller in size. Clipped plants that remained reproductive were smaller in the following season than unclipped controls. Plant size was positively correlated with the number of ovules, suggesting that reductions in the growth rate of reproductive plants diminish their future reproductive success. Populations with high levels of natural herbivory had a greater proportion of reproductive plants that regressed to nonreproductive stages, probably because reproductive plants in these populations were smaller in size. However, the plant response to herbivory was similar across populations.  相似文献   

2.
Guitián, J. 1995. Sex ratio, reproductive investment and flowering phenology in dioecious Rhamnus alaternus (Rhamnaceae). - Nord. J. Bot. 15: 139–143. Copenhagen. ISSN 0107–055X.
During 1992 and 1993 I investigated the reproductive biology of the dioecious Mediterranean shrub Rhamnus alaternus in a population in the northwest Iberian Peninsula. Reproductive investment was estimated as the mean total dry weight of reproductive organs per branch tip. I also estimated number of flowers produced per plant and population sex ratio, and investigated the spatial distribution of the sexes and flowering phenology. The sex ratio was 1:1, and the spatial distribution of the sexes was random. Male plants produced 2.6 times more flowers than female plants, but the overall reproductive investment by females was 5- to 9-fold higher. In both years of study, male plants commenced flowering first. The male and female flowering peaks coincided closely (in late March) in both years. The results of this study suggest that male and female R. alaternus differ most notably in the amount of resources allocated to reproduction.  相似文献   

3.
Reproductive performance and phenology in gynodioecious Ochradenus baccatus was investigated at Wadi Degla, in Egypt's arid Eastern Desert. Between January and December 2005, plants representing a series of size classes were identified from two populations, located ca. 7.5 km apart. A total of 94 individuals were marked and classified according to sex expression and overall size/canopy volume. Reproductive phenology was monitored across the year. Plants presented an extended reproductive phenology having two peaks, in spring and autumn. Plant size was a significant factor influencing reproductive output and phenology. Fruit number, seeds-per-fruit and seed mass all varied significantly among the size classes of both female and hermaphrodite plants, during both spring and autumn phenophases. Numbers of fruit and seeds-per-fruit were greater in spring than autumn, and female forms had greater fruit numbers, seed mass and percent germination, and fewer seeds-per-fruit than hermaphrodites. Numbers of fruits, seeds-per-fruit and seed mass were all significantly positively correlated with plant size. Seeds produced at the larger downstream population had greater seed germination rates than those from the upper site. Results are discussed in terms of plant size and directed seed dispersal patterns.  相似文献   

4.
  • Senescence is a puzzling phenomenon. Few convincing studies of senescence in perennial herbaceous plants exist. While ramets are known to senesce, whether senescence of bunchgrasses actually occurs is not clear.
  • In this study, we grew a set of plants of Elymus excelsus, a bunchgrass, to examine plant size, sexual reproduction and bud formation in individual plants in relation to their gradual ageing, in order to determine whether E. excelsus experiences senescence. We collected data in two consecutive years (2009 and 2010) from field samples of plants from 1 to 5 years old. Using regression models, we performed age‐related analyses of growth and reproduction parameters.
  • Our results showed that individual plant size (diameter, individual biomass), total biomass of ramets, number and biomass of reproductive ramets, percentage of ramets that were reproductive, reproductive allocation, over‐wintering buds and juvenile ramets all declined with age. However, vegetative growth (number and biomass of vegetative ramets) did not decrease with age.
  • Those plants that survived, dwindled in size as they aged. However, no plants shifted their resource allocation between growth and reproduction as they aged, so the shift in allocation did not account for the fall in size.
  相似文献   

5.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

6.
Phenotypic plasticity is an important plant trait associated with invasiveness of alien plants that reflects its ability to occupy a wide range of environments. We investigated the phenotypic response of Chenopodium murale to resource variability and ontogeny. Its plant-level and leaf-level traits were studied at high-resource (HR) and low-resource (LR) sites in peri-urban areas in Indian dry tropics. Plants at LR had significantly higher root length, root/shoot biomass ratio, stem mass and root mass fractions. Plants at HR had higher shoot length, basal diameter, leaf mass fraction and leaf area ratio. Leaf-level traits like leaf area and chlorophyll a were also higher here. Mean plasticity indices for plant- and leaf-level traits were higher at HR. With increasing total plant biomass, there was significant increase in the biomass of leaf, stem, root, and reproductive parts, and root and shoot lengths, whereas root/shoot length ratio, their biomass ratio, and leaf and root mass fractions declined significantly. Allocation to roots and leaves significantly decreased with increasing plant size at both sites. But, at any size, allocation to roots was greater at LR, indicative of optimization of capture of soil nutrients, whereas leaf allocation was higher at HR. Consistently increasing stem allocation equaled leaf allocation at comparatively higher shoot lengths at HR. Reproductive biomass comprised 10–12% of the plant’s total biomass. In conclusion, the success of alien weed C. murale across environmentally diverse habitat conditions in Indian dry tropics can be attributed to its high phenotypic plasticity, resource utilization capability in low-resource habitats and higher reproductive potential. These characteristics suggest that it will continue to be an aggressive invader.  相似文献   

7.
Individuals within a population often differ considerably in size or resource status as a result of environmental variation. In these circumstances natural selection would favour organisms not with a single, genetically determined allocation, but with a genetically determined allocation rule specifying allocation in relation to size or environment. Based on a graphical analysis of a simple evolutionarily stable strategy (ESS) model for herbaceous perennial plants, we aim to determine how cosexual plants within a population should simultaneously adjust their reproductive allocation and sex allocation to their size. We find that if female fitness gain is a linear function of resource investment, then a fixed amount of resources should be allocated to male function, and to post‐breeding survival as well, for individuals above a certain size threshold. The ESS resource allocation to male function, female function, and post‐breeding survival positively correlate if both male and female fitness gains are a saturating function of resource investment. Plants smaller than the size threshold are expected to be either nonreproductive or functionally male only.  相似文献   

8.
We monitored the allometric effects for greenhouse-grown Agriophyllum squarrosum plants in response to variations in population density and the availability of soil nutrients and water. Biomass allocations were size-dependent. The plasticity of roots, stems, leaves, and reproductive effort was “true” in response to changes in nutrient content. At a low level of soil minerals, plants allocated more resources to the development of roots and reproductive organs than to leaves, but data for stem allocations were consistent for tradeoffs between the effects of nutrients and plant size. The plasticities of leaf allocation and reproductive effort were “true” whereas those of root and stem allocations were “apparent” in response to fluctuations in soil water, being a function of plant size. Decreasing soil water content was associated with higher leaf allocation and lower reproductive effort. Except for this “apparent” plasticity of leaf allocation, none was detected with population density on biomass allocation. Architectural traits were determinants of the latter. For roots, the determining trait was the ratio of plant height to total biomass; for stems and reproduction, plant height; and for leaves, the ratio of branch numbers to plant height.  相似文献   

9.
Abstract To elucidate the effects of herbivory by chrysomelid beetles on Rumex japonicus, rosette leaves were clipped and the subsequent fruit production and root growth were observed. The increase of leaf biomass of some clipped plants was greater than that of control plants, although this varied among individual plants. The root growth of clipped plants was less than that of control plants. Fruit production increased with plant size, and there was no difference in fruit production between clipped and control plants. Reproductive allocation (fruit biomass, relative to fruit biomass plus root growth) increased with plant size; it was greater in clipped plants than in control ones. Based on these results, reproductive allocation strategy against herbivory was discussed.  相似文献   

10.
The relationship between plant size and vegetative reproduction in clonal plants appears complex because vegetative expansion, growth, and reproduction are not clearly separable in such plants. In pseudo-annuals, which are clonal plants surviving the winter only as seeds and hibernacles produced by the rhizome apices, vegetative growth and reproduction are clearly separate processes so that the relationship between vegetative reproduction and plant size can be studied. We used the pseudo-annual Helianthus x laetiflorus Pers. to study the relationship between plant size and total rhizome biomass, rhizome (hibernacle) biomass, and number of hibernacles. We manipulated resource acquisition of the plants by reducing leaf area (leaf-clipping) and by fertilization, thus affecting plant size. Furthermore, we studied the success of thin and thick hibernacles in terms of future growth and reproduction in a separate experiment. The results showed that vegetative reproduction was positively related to plant size. The ratio between the number of hibernacles and mean hibernacle weight was affected by plant size in such a way that in small plants both number of hibernacles and mean hibernacle weight were reduced to the same extent as compared to those in large plants.However, the size distributions of plants of the next generation growing from thin and thick hibernacles did not differ. It remains unclear therefore why this pseudo-annual species produces thick hibernacles at all.  相似文献   

11.
An analysis of the relationships between plant size and survivorship and reproductive success was carried out by sampling four populations of the herbaceous perennial milkweed Asclepias exaltata in Virginia from 1980 to 1982. The annual survivorship rate (about 65%) is the lowest measured for any species of Asclepias. Survivorship was strongly size-dependent but showed no clear relationship with previous history of fruit production. Non-flowering plants were significantly smaller than flowering plants and showed very strong (r > 0.87) correlations between root dry weight and stem or leaf dry weight. Flowering plants were similar to nonflowering plants in root: shoot ratio (approximately 1:1) but differed in that root dry weight was not strongly correlated with stem or leaf dry weight. Components of inflorescence size were strongly correlated within a given level of comparison (e.g., stems per plant with flowers per plant) but less strongly correlated between levels (e.g., stems per plant with flowers per stem). Number of fruits per plant and percentage fruit-set were positively correlated with every component of inflorescence size. Although overall fruit-set was low (about 2%), fruits that were initiated had a high probability of surviving to maturity. There was no evidence of an early period of high fruit abortion: a relatively constant proportion of fruits aborted between each age class.  相似文献   

12.
Chidumayo  E.N. 《Plant Ecology》2003,165(2):275-286
Detailed demographic studies of herbaceuos plants in afro-tropicalsavannas are extremely rare in published literature. I studied phenology andpopulation dynamics of a perennial herb, Lapeirousiarivularis Wanntorp, at a savanna site in Zambia over a 4-yearperiod, from 1997 to 2001, using enumeration techniques in permanent andtemporary quadrants. The age of the plants was accurately determined frompersistent annual sheaths that accumulate around the corm throughout the lifeofthe plant while the estimated survivorship of the 1998 cohort was developedfroma mathematical model based on the observed mortality of the cohort over a3-yearperiod.L. rivularis completed its annual phenological cycle in asingle rainy season. Plants sprouted from perennating corms in early December,flowered, fruited and dispersed seeds by end of January. Seeds germinatedimmediately after dispersal and seedlings produced small corms before aerialparts died early in the dry season. L. rivularis has twomorphs: a vegetative morph and a reproductive morph; the latter bears severalleaves and flower stalks. In the vegetative morph, the corm is renewed annuallywhile the corms of the reproductive morph did not appear to be renewed. Insteadcorms grew larger and produced lateral daughter corms that became independentramets the following rainy season.Most L. rivularis plants reached reproductive maturitywhen they were 6–10 years old. Reproductive success, seedlingestablishment and recruitment varied from year to year in the grassland plotperhaps because of fluctuations in weather conditions and heavy episodic insectherbivory. The survivorship curve of L. rivularis wascharacteristically concave due to high juvenile mortality (0.2–0.5) andvery low adult mortality (0.03). Although about 3% of the plants live to be upto 30–35 years, the mean age of the population in 2001 was 6.4 yearsbecause of the predominance of juvenile plants. The production of a protectivesheath at the end of the rainy season and the accumulation of old sheathsaroundthe fleshy corm are apparent adaptations against desiccation during the longdryseason drought when the topsoil remains below wilting point. The high juvenilemortality during the dry season is probably caused by inadequate protection bythe few sheaths around the corm against desiccation.Population dynamics in L. rivularis were caused byvariable annual recruitment and high juvenile mortality. Population densitydoubled in 1999 due to good fruiting success in the previous season that wasassociated with good weather conditions and negligible herbivory. Althoughcultivation had a significant negative effect on the population of L.rivularis, it increased consistency in fruiting success andproduction of fruits per plant, presumably because of improvement insoil-moisture status, reduction in plant competition and by providing temporalescape from insect herbivory through delayed flowering. The phenology and lifehistory of L. rivularis exhibit adaptations to a savannaenvironment that is characterized by disturbance and stress caused by seasonaldrought, fire, episodic herbivory and cultivation.  相似文献   

13.
Plant reproductive success is supposedly influenced by phenology and individual size, which may be modified under edge effects. We tested if reproductive success, estimated by fruit set, in Senefeldera verticillata (Euphorbiaceae) is related to flowering synchrony and tree size, including plant height and circumference at breast height. The study was carried out in the interior and in edges of clearings for gas pipelines and electric lines of a lowland rainforest in south‐eastern Brazil. Monthly observations were performed during one reproductive season, of 19 individuals that grew at edges of electric lines and gas pipelines and at forest interior. Reproductive success was significantly higher at forest interior than at gas pipeline area; there was no significant difference between gas pipeline and electric line areas or between forest interior and electric line area. In the forest edges, only plant height was positively related to plant reproductive success. This is probably related to crown exposure to sunlight, which enhances flower production. At forest interior, reproductive success was positively influenced by the synchrony of flowering activity among neighbouring individuals. In contrast, flowering synchrony based on phenophase intensity negatively impacted reproductive success. Senefeldera verticillata shows temporal dioecy and is mainly pollinated by small social bees, and the high degree of flowering synchrony at low intensity may increase the number of mating partners and therefore enhance its reproductive success. Inside the forest fragments, individuals with thicker trunks showed lower reproductive success, which may be related to a loss of reproductive capacity of older individuals. Our results evidenced the complexity of responses experienced by tropical plants subjected to forest fragmentation because of linear clearings.  相似文献   

14.
The allometry of greenhouse‐grown Salsola collina Pall. in response to variation in soil nutrient content, water supply and population density has been compared. The results showed that the biomass allocation was size‐dependent. Root, stem, leaf and reproductive allocation showed a ‘true’ plasticity in response to soil nutrient variation. At low soil nutrient content, plants tended to allocate more biomass to the development of reproductive organs than to stem and leaf, but root allocation was consistent due to a tradeoff between the effects of plant size and soil nutrient content. The plasticity of stem allocation and reproductive effort was ‘true’, while the plasticity of root allocation was ‘apparent’, but there was no plasticity for leaf allocation in response to soil water variation. At lower soil water content, plants tended to allocate more biomass to the stem than to development of reproductive organs. With the exception of ‘apparent’ plasticity of root allocation, no plasticity was detected in biomass allocation when population density was varied.  相似文献   

15.
The life history of an organism can be viewed as the combination of allocations made to maintenance, growth, and reproduction. Allocation to these functions are constrained by trade-offs as increased investment to one function may happen at the expense of another. Moreover, because fecundity and survival probabilities are affected by both the state of an individual and by its surrounding environment, optimal allocation to reproduction and growth may vary with both individual size/age and with the habitat in which it lives. In this study we aim to describe how flower production varies with individual plant age and leaf production among different patches of the perennial herb Corydalis intermedia. We take advantage of the construction of the underground storage organ to estimate the age of individual plants which allows us tacitly to relate flower and leaf production to individual age and successional status of the patch. We sampled all individuals present in nine patches from the same forest and estimated their age, flower production and total leaf area. The age distributions showed that each patch was most often dominated by a few and consecutive age classes. In patches where individuals had the oldest mean age, very few or no juvenile age classes were found suggesting that recruitment had ceased. Based on the age distribution of the patches we propose that the dynamics may best be described as metapopulational with colonization of newly formed open forest gaps and a successionally determined extinction as the patch gradually becomes too shaded for recruitment. Both mean flower production, leaf area and age varied significantly among patches. Flower production increased with both increasing age and leaf area. We found no indication of a trade off between reproduction and vegetative growth since flower production showed a positive relation with leaf production even after removing the effect of age. Number of flowers produced by plants of the same age but growing in different patches did not vary indicating that the difference among patches mainly was due to a difference in age distribution. No individuals produced flowers before they reached an estimated age of three years. Production of flowers followed a power function with increasing age. Our data suggests that C. intermedia plants change their allocation strategy with age investing a relatively large amount of energy in flower production immediately after the immature growth phase when recruitment in their patch may be high. Production of flowers then reaches a plateau around the age of 11 years after which number of flowers produced stays constant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
For plants with wide distributional areas, covering a wide range of ecologically distinct habitats, evolutionary divergence can lead to substantial phenotypic variation across a species’ range. These intraspecific trait differences can be very informative about the nature of the selective environment as they potentially reflect different environmental selection pressures while controlling for other species characteristics. In this study, multiple regression and structural equation models were used to examine the relative importance of environmental, ecological, population size and population density effects for variation in growth, reproduction and leaf morphology among 36 populations of the perennial plant Arabidopsis lyrata ssp. petraea across its northwest European range. Substantial variation in temperature, soil nutrient levels and herbivory was observed across the species’ range. In addition, large differences in flowering percentage and individual seed production were found. Leaf morphology varied considerably, with a substantial amount of variation in specific leaf area and trichome density among populations. Structural equation modeling suggested that this species is sensitive to small population sizes, eutrophication and herbivory. Reproductive output was negatively related to herbivory. In addition population size was negatively associated with soil nutrient concentrations. Leaf morphology was shown to be mainly associated with temperature and herbivory. Lower specific leaf areas and lower trichome densities were related to colder areas and high trichomes densities were related to high levels of herbivory. These model results are consistent with the interpretation that, in addition to changing environmental effects across its range, ecological effects such as herbivory contribute to the large variation in life history and morphology of this species. The results reveal a strong negative effect of herbivory on the reproductive output of this species, not only via direct effects of herbivory on flowers and seeds, but also indirectly via a shift in life history strategy.  相似文献   

17.
Models of global climate change predict an increase in the frequency of major droughts, yet we know little about the consequences of drought for the demography of natural populations. This study examined a population of the semi-desert perennial Cryptantha flava (Boraginaceae) to determine how plants of different developmental stages respond to drought through changes in leaf gas exchange, leaf water potential, water use efficiency, growth, and reproduction. In two of the four years, drought was applied using rainout shelters, and a severe natural drought occurred in another. Small, presumably younger, plants sometimes had lower rates of maximum photosynthesis, lower leaf water potentials, and lower instantaneous or integrated water-use efficiency than large plants. Small plants also had higher relative growth rates and lower reproductive effort. Large plants with evidence of shrinkage from a previously larger size often produced less growth and reproduction than large healthy plants, suggesting a decline in plant vigor with age. Drought depressed gas exchange and leaf water potentials equally in all plant stages. Thus, leaf-level physiological attributes provide no clues for why drought reduces growth more strongly in large plants. The results point to several additional avenues of research relevant to understanding stage-dependent or age-dependent plant performance under drought conditions.  相似文献   

18.
  • Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation.
  • We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole‐plant photosynthesis, and ultimately in aboveground biomass.
  • Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole‐plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant‐level C gain, and ultimately to larger aboveground biomass.
  • In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf‐level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
  相似文献   

19.
The Cactaceae family in Mexico is particularly important because members of this family exhibit a high degree of endemism. Unfortunately, many species of the Cactaceae are threatened or endangered. We employed an integral projection model for studies of the population dynamics of Mammillaria gaumeri, an endemic cactus of the Yucatán characterized by a small population size. The integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities and elasticities of the growth rate to changes in vital rates. Nine locations of this species were studied along the Yucatan coast over a 9-year period. Individuals were classified by plant volume. Most population growth rate (λ) values were below unity. The highest elasticity values corresponded to the survival of intermediate size individuals. The percentage of germination in the field was low, and consequently, fecundity values were also low. Reproductive values were observed to increase with plant volume. The stable size distribution of M. gaumeri was skewed toward small individuals. For all years, the kernel showed that individual survival determined the population growth rate.  相似文献   

20.
Captive studies and occasional trappings of wild individuals indicate that callitrichids have small size and body weight and lack sexual dimorphism. We compared body weights of captive and wild Callithrix jacchus obtained by repeatedly weighing subjects from two populations in Brazil. We obtained captive data by routinely weighing 138 individuals from the Universidade Federal do Rio Grande do Norte colony and wild data via regular trapping of 243 individuals in 15 free-ranging groups from IBAMA's field site in Nísia Floresta. We assigned all subjects to one of four age classes—infant, juvenile, subadult, and adult—according to their birth dates or size, reproductive status, and dental development. There is no significant difference between males and females in any of the four age classes, but captive subjects were heavier than wild ones in all age classes but infant. Reproductive and nonreproductive adult females showed no statistical difference in weight. These results accord with previous reports of lack of body size sexual dimorphism in common marmosets and suggest that differences between wild and captive common marmosets are not constitutional, but are instead a consequence of diet and physical activity. The absence of weight difference between reproductive and nonreproductive females suggests that any possible advantage from high rank is outweighed by the costs of reproduction in common marmosets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号